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RESUMO 
Este trabalho avaliou se os modelos GARCH do regime de Markov podem superar os 
modelos do tipo GARCH na previsão. Para atingir este objetivo, foi utilizado o mercado 
acionário brasileiro - Ibovespa - entre 2012 e 2017 como escopo do estudo. A principal 
diferença do nosso trabalho é a definição do padrão dentro e fora da amostra. Este trabalho 
determinou uma previsão de 200 passos à frente (10 meses), com reestimação do modelo a 
cada passo à frente, a fim de encontrar evidências conclusivas e resultados robustos do 
modelo que tem melhor capacidade preditiva. Os resultados mostraram que os modelos do 
tipo GARCH mostram um desempenho ligeiramente melhor para o VaR a 5% e os modelos 
de regime de Markov tiveram melhor desempenho a 1% e precisão preditiva considerando a 
maioria dos critérios estatísticos. Além disso, conclui-se que nenhum modelo poderia ser 
determinado como referência por critérios estatísticos, o que mostra que não há como 
determinar um modelo que supera a previsão no mercado acionário brasileiro. 
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DOES MRS-GARCH OUTPERFORMS THE SINGLE GARCH-TYPE MODELS FOR 
FORECASTING? 

 
ABSTRACT 
This paper evaluated if the Markov switching regime GARCH models can outperforms the 
single GARCH-type models on forecasting. To achieve this objective, it was used the 
Brazilian stock market – Ibovespa –  between 2012 and 2017 as study scope. The major 
difference of our work is the definition of the in-sample and out-of-sample pattern. This paper 
determined a 200 steps-ahead (10 months) forecast, with model re-estimation at each step-
ahead, in order to find conclusive evidence and robust results of the model which has better 
predictive ability. The results showed that the single GARCH-type models show a slightly 
better performance for VaR at 5% and switching regime models had better performance at 
1% and predictive accuracy considering the most of statistical criteria. Besides that, no 
model could be determined as benchmark by statistical criteria, which displays that there´s 
no way to determine a model that outperforms for forecasting on the Brazilian stock market. 
 
Keywords: Forecasting; Value-at-Risk; Volatility; MRS-GARCH; Stock market. 
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1 INTRODUCTION 

The volatility researches in financial series became popular from pioneering 

studies by Engle (1982) and Bollerslev (1986), which estimated ARCH 
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(Autoregressive conditional heteroskedasticity) and GARCH (Generalized 

autoregressive conditional heteroskedasticity) models. The reason for these models 

became widely used was, according to Reher and Wilfling (2011), the compatibility of 
the GARCH models with the financial series of returns, the existence of efficient 

statistical methods to estimate the parameters of the model and availability of useful 

forecasts for volatility. 

Besides that, measuring risk has become a crucial issue for many portfolio 

managers and investors. In recent years, finance literature has focused on risk 

management. So, Value-at-Risk (VaR) analysis has been a matter of great concern 

for financial risk management. VaR analysis has been extensively used to measure 

the possible maximum amount of loss for an asset (or portfolio) in a specific period of 

time at a given confidence level by portfolio managers, regulators and practitioners. 

In other words, VaR has measured the maximum loss in value of a portfolio over a 

predetermined time period for a given confidence level (BALIBEY; TURKYILMAZ, 
2014). 

In order to search for specific models for each type of volatility such as 

leverage and stylized facts, several GARCH-type model specifications have been 

developed. The EGARCH models of Nelson (1991) and GJR-GARCH of Glosten et 

al. (1993), for example, consider asymmetries and volatility shocks.  

Although the EGARCH and GJR-GARCH models assume the possibility of 
volatility asymmetry, they operate on only one regime to capture the high persistence 

in volatility, ie, they adjust to the historical series with only one pattern, ignoring 

possible structure changes. Cai (1994) and Hamilton and Susmel (1994) introduce 

the regime change process (Hamilton, 1988, 1989) into the GARCH model in order to 

consider possible structural breaks. In particular, the Markov Regress Switching 

Model (MRS-GARCH) allows Markov chain regimes to have different GARCH 

behaviors, i.e, different volatility structures, to extend the fit of GARCH models to 

dynamic forms and to perform better estimations, forecasting and prediction 

performance (KLAASSEN, 2002; HAAS et al., 2004; MARCUCCI, 2005; ZHANG; 

WANG, 2015; ZHANG; ZHANG, 2015). 

According to Reher and Wilfling (2011), the GARCH models with switching 

regimes are designed to capture discrete changes in the volatility process of the data 
series, and are widely used in time series. Some studies of this approach make use 
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of commodity prices, such as those of Alizadeh et al (2008), Henry (2009), Bohl et al 

(2011) and Zhang, Yao & He (2015). Other works make use of series of returns of 

some listed companies, as is the case of Reher and Wilfling (2011) applied in the 

German market and Chlebus (2016), which analyzed the Polish market, specifically 
companies listed in the Warsaw Stock Exchange. 

Besides that, some works focused on testing the accuracy for forecasting of 

MRS-GARCH against the single GARCH-type models. Liu and Hung (2010) 

proposed two types of regime-switching GARCH models and the single GARCH-type 

to forecasts the YEN-US Dollar exchange rate and IBM stock price and confirmed the 

better performance for the regime-switching models. Clifter (2013) forecasted the 
electricity prices of Nordic electric power market with different volatility models and 

conclude that the MRS-GARCH outperformed all other models of single regime for 

forecasts electricity prices. Iqbal (2016) forecasts the returns of KSE – that is the 

leading and dominant stock exchange of Pakistan – using the single GARCH-type 

models besides the MRS-GARCH. He concluded that the MRS-GARCH 

outperformed forecasting for short-time horizons (1 and 5 day ahead), and EGARCH 
with t-student distribution performed better for long-time horizons (22 day ahead). 

When observing the difference between the single regime GARCH-type and 

those of Markov, this study aims to examine if the MRS-GARCH models improves 

the forecasts of volatility and VaR, compared to the single GARCH-type models. 

Gaussian, students-t and GED distributions are compared in terms of accuracy of 
volatility forecasts. The robustness of this work lies in the fact that we’re using 200 

steps ahead with model re-estimation at each one step. 

 
2 ECONOMETRIC METHODS 

This section will be structured in three as follows: first, the GARCH-type 

models will be showed. Then, the Markov Switching Regime GARCH-type will be 

exposed. Thus, the Value-at-risk method will be described. After that, the accuracy of 

prediction volatility models and his criterias, and for last, all the criterias of VaR 

backtesting will be showed. 
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2.1 GARCH-type models 
Bollerslev (1986) defined the GARCH (p,q) model, which consider the current 

conditional volatility as function of p previous conditional variances q previous 

squared errors. This model can be expressed as (1). 

௧ଶߪ = ߙ + ∑ ௧ିଵଶߝଵߙ + ∑ ௧ିଶߪߚ ; ℤ߳ݐ
ୀଵ


ୀଵ .                                                         (1)                

Where ߙ > ଵߙ ,0 ଵߚ, ≥ 0, and ߙଵ ଵߚ + < 1, according to Iqbal (2016), ensure a 

positive conditional variance and stationarity of the process. This model is symmetric, 

that is, both negative and positive shocks have similar impact on the conditional 

volatility. 

To capture asymmetries, there are two popular volatility models that can 

respond asymmetrically to positive and negative shocks. The exponential GARCH 

(EGARCH) model of Nelson (1991) and the GJR model of Glosten et al (1993). The 

EGARCH model can be expressed as (2). 

log(ߪ௧ଶ) = ߙ + ∑ ଵߙ
ఌషభ
ఙషభ


ୀଵ + ଶߙ ቀቚ

ఌషభ
ఙషభ

ቚ − ܧ ቚఌషభ
ఙషభ

ቚቁ + ∑ ߚ ݈݃

௧ିଵ ௧ିଶߪ) ).            (2)      

In case ߙଶ < 0, according to Wennström (2014), corroborates the leverage 

effect. In addition, if the parameter  ߙଵ is statistically significant and non-zero, there is 

an asymmetric effect. This effect is characterized by the difference of responses to 

shocks in the series, i.e, a positive shock does not have the same effect as a 
negative shock of the same magnitude. According to Alexander et al. (2009), the 

term β is the parameter that measures the persistence of volatility, and the higher the 

value, the more intense the volatility and its persistence lasts longer. 

The other way to model the impact of asymmetric shock is the GJR-GARCH, 

that can be described as follows in (3). 

௧ଶߪ = ߙ + ∑ ଵߙ]

ୀଵ ௧ିଵଶߝ + ௧ିଵଶߝଶߙ [(ఌషಭబ)ܫ + ∑ ߚ


ୀଵ ௧ିଶߪ .                                   (3)  

Where ܫ(.) represents a function, who presents a unitary value if ߝ௧ିଵ < 0, ∀=

1,2, … , ௧ିଵߝ and zero if  > 0, ∀= 1,2, …  Iqbal (2016) infers that the positive return .,

contributes to the volatility only through the factor ߙଵ + ଶߙ  in case of negative return. 

Here ߙଶ  is called the asymmetric parameter, a significant ߙଶ > 0 indicates leverage 

effect and the ߙଶ = 0, the GJR (1,1) model reduces to the linear GARCH (1,1) model. 
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2.2 Markov regime-switching GARCH models 
Using the definition of Kritzman et al (2012) and applied by Günay (2015), the 

Markov switching regimes are represented as follows in (4). 

Pr( ܺ = ݅) =                                                                             ,                                                                                                (4)

where ܺ  is the first Markov regime. Next, will be showed the probability of 

switching regimes  Γ , where ߛ , represents the parameters of each regime transition 

matrix. 

Γ = ቀ
ଵଵߛ ଵଶߛ
ଶଵߛ                                                                                        ଶଶቁ                                                                                                 (5)ߛ

and 
ߛ = Pr(ܺ = ݆| ௧ܺିଵ = ݅).                                                                                 (6)                             

Where t shows time. So, the Markov chain will be on ܺ = 1 or ܺ = 2 regimes 

on time. Each regime presents  ߛ observations and according the ߨ distribution. 

This distribution can be explained as follows in (7). 

ߨ = Pr(ߛ = |ݏ ܺ = ݅),                                                                                     (7)                                                                                  

which demonstrates that the ܺ  regime dictates the probability ߛ have a s 

specific value. Following the GARCH-type models, the MRS-GARCH can be exposed 

as follows in (8). 

ݎ = ଵߤ
() + ߝ = ()ߜ  + ߝ  ;  ήඥℎ  ;                                                                     (8)                                               

ℎଵ
() = ߙ

() + ଵߙ
()ߝ௧ିଵଶ + ଵߚ

()ܧ௧ିଵቄℎ௧ିଵ
() ቚݏଵቅ;                                                         (9)                                                    

௧ିଵቄℎ௧ିଵܧ
() ቚݏଵቅ =   ,௧ିଵ ቀߤ௧ିଵ

() ቁ
ଶ

+ ℎ௧ିଵ
() ൨ + ,௧ିଵ ቀߤ௧ିଵ

() ቁ
ଶ

+ ℎ௧ିଵ
() ൨ − ቂ ,௧ିଵߤ௧ିଵ

() +

 ,௧ିଵߤ௧ିଵ
() ቃ

ଶ
.                                                                                                   (10)                                        

Which ݅, ݆ = 1,2 delimitates the two regimes of MRS-GARCH model,   ,௧ ,  =

Pr(ݏ = ௧ାଵݏ|݆ = ݅, ߫௧ିଵ) = ೕ ୰ ൫ݏ = ݆หݏ௧ାଵ = ݆, ߫௧ିଵ൯
୰ ൫ݏ௧ାଵ = ݅ห ߫௧ିଵ൯

= ೕ  ೕ,

,శభ
, ߫௧ିଵ represents the 

information showed in  ݐ − 1. 

 
2.3 Value-at-Risk (VaR) 

Method that measures the worst expected loss of a portfolio at a given 

confidence model, VaR follows the regulatory process of the Basel Accords (currently 
the Basel III Accords), banks and financial institutions are required to meet capital 

requirements, and must rely on state–of–the–art risk systems (ARDIA et al., 2016). 
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VaR is achieved in two steps. First, the distribution of future profit & loss (i.e., future 

portfolios or assets returns) is modelled. Second, financial risk is measured from the 

distribution; nowadays, the VaR risk measure is the standard (JORION, 1997). This 
metric gives, for a given time horizon, the asset’s loss (or return) that is expected to 

be exceeded with a given probability level α (referred to as the risk level), and which 

is typically set to one or five percent, i.e, 0.01} ߳ ߙ, 0.05}. Hence, the VaR is nothing 

else than a given percentile of the returns distribution. The popularity of VaR mostly 

relies on: (i) the simple rationale behind it, (ii) the ease of computation, and (iii) its 
role in the financial regulation (BASEL COMITEE, 2010). 

Hence, assuming a continuous cumulative density function (c. d. f.) with time-

varying parameters ߠ௧߳ℝௗ  and additional static parameters ߰߳ℝௗ .)ܨ , , ௧ߠ ;߰), for the 

asset log-return at time t, VaR is computed as follows in (11). 

ܸܴܽ௧ ≡ ௧ߠ;ߙ)ଵିܨ ;߰),                                                                                     (11)                                                             

where ିܨଵ(. )denotes the inverse c. d. f., i.e, the quantile function. It follows 

that ܸܴܽ௧(ߙ) is nothing more than a α-quantile of return distribution at time t 

 
2.4 Predictive Accuracy of volatility models 

A huge number of statistical loss functions exists that can be evaluate the 

volatility forecasts models. According to Lopez (2011), there’s no unique criteria for 

selection of the best model whose fits better for forecasting. This study employs two 

different statistical loss funcion to evaluate the forecasts of competing models. The 
root mean squared error (RMSE) and the mean percentage error (MPE) are 

commonly used for the evaluation of volatility forecasts. RMSE is defined as follows 

in (12). 

ܧܵܯܴ = ටଵ
்

>௧ୀଵ
் ௧ߪ) − ℎ௧

భ
మ)ଶ.                                                                          (12)                                                           

An RMSE with proximity of zero means that the quality of prediction gets 

closer of perfection. MPE is defined by (13).  

ܧܲܯ = ଵ%


∑ ି



௧ୀଵ .                                                                                   (13)                                              

Where ܽ௧ is the actual value of the quantity being forecast, ௧݂ is the forecast, 

and n is the number of different times for which the variable is forecast. As occurs on 

RMSE, values that getting closer from zero are preferred for MPE criteria. 
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2.5 VaR backtesting 
To test a VaR estimator, Kupiec (1995) developed a test based on the number 

of failures in the market risk forecast, compared to the confidence interval 

established before. The test is based on the likelihood ratio, which can be used to 
estimate a point sample statistically consistent with the VaR model. This statistic 

follows a chi-square distribution with 1 degree of freedom, and is given by (14). 

௨ܴܮ = 2݈݊[(1 − [.ො்ߙ்ି்(ොߙ − ݈݊[(1 −                   ଶ.                                      (14)߯~[.்ߙ்ି்(ߙ

This test only verifies the ponctual estimate of VaR. According to Coster 

(2013), the test proposed by Christoffersen (1998) aims to test whether the VaR is 
being punctually well estimated (that is, if the ratio of violations is close to the 

expected level) and whether these violations are independent. The Christoffersen 

test is divided into two parts, one, called by the author as unconditional coverage 

௨ܴܮ) ), which is used to verify the ponctual estimate and another, called the 

independence test (ܶܫ), to verify the independence of such violations. However, the 

author emphasizes thet alone is not able to test the independence of violations. The 
IT statistic can be obtained by (15) and (16). 

ܶܫ = 2ൣ(ln (1 − (ොଵߨ బ்బߨොଵ
బ்భ(1 − (ොଵଵߨ భ்బߨොଵଵభ்భ) − ln ((1 − )(ොߨ బ்బା భ்బ)ߨො( బ்భା భ்భ))൧, (15)         

ොߨ = ܶ
( ܶ + ܶଵ)൘ ොߨ, = ( ܶଵ + ଵܶଵ)

ܶൗ  .                                                         (16)     

For ݅, ݆ = 0,1, let ܶ  denotes the number of time points {ݐ; 2 ≤ ݐ ≤ ܶ} for which 

௧ܫ = ݅ is fallowed by ܫ௧ାଵ = ݆. Both tests are likelihood ratio tests and the final test 

statistic is the sum of these two test statistics. Thus, the conditional coverage test 
ܴܮ) ) is defined as (17). 

ܴܮ = ܫܶ +                          ௨~߯ଶଶ.                                                                                    (17)ܴܮ

Thus, the Christoffersen test has as null hypothesis that the proportion of VaR 

violations that occur is equal to the number of expected proportions and that these 

violations occur independently. 
In addition to these tests, we have the Dynamic Quartile Test (DQ), which also 

measures the independence of VaR returns violations. According Chen et al. (2011), 

it employs a regression-based model of the violation-related variable “hits”, defined 

as ݕ)ܫ௧ < −ܸܴܽ௧) −  which will on average be α if uncondicional coverage is ,ߙ

correct. A regression-type test is then employed to examine whether the “hits” are 
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related to lagged “hits”, lagged VaR forecasts, or other relevant regressors, over 

time. 

To estimate the magnitude of the return violation, McAleer and Da Veiga 
(2008) proposed the absolute deviation (AD), which is defined by (18). 

௧ܦܣ = ௧ݕ| − (−ܸܴܽ௧)|ݕ)ܫ௧ < −ܸܴܽ௧).                                                             (18)                                                     

Such as defined by Chen et al. (2011), this measure is related to the size of 

the loss for violating returns. The evaluated forecast of this study was based on the 
mean and maximum of AD, where the smaller values are preferred. 

In order to evaluate and compare various VaR forecast models in terms of 
predictive quantile loss (QL), we use the “check function” of Gozález-Rivera et al. 

(2004). In what follows, the expected loss is given by (19). 

ܮܳ = ߙ}ܧ − ௧ݕ)1 < ௧ݕ]((ߙ)௧ݍ −                    (19)                                                         .{[(ߙ)௧ݍ

The loss ܳܮ can provide a measure of the lack-of-fit of quantile model. The 

best forecasting model is the one that minimizes the expected loss. The null 

hypothesis is thet all the models are no better that eachother. Evidently, QL is an 

asymmetric loss function that penalizes more heavily with weight (1 − α) the 

observations for which we observe returns VaR exceedance. Quantile losses are 

then averaged over the forecasting period. Models with lower averages are preferred. 
The referred tests presents the statistical validity of VaR. To test the accuracy 

of the model, we have the actual over expected excedence ratio (AE), which is 

defined as follows in (20) 

ܧܣ = ොߙ ൗߙ .                                                                                                     (20)                                                         

For being a relation between an estimated statistic (ߙො) and realized (α), values 

close to 1 will be preferred, whereas they present a rate closer to that achieved. 

 
3 DATA AND EMPIRICAL RESULTS 

In order to verify what the model that outperforms on forecasting, this study 

was focused on the Brazilian stock market, more specifically on Ibovespa. The 

Bovespa Index or Ibovespa (Ibov) is the main indicator of the Brazilian stock market 

that validates the average performance of stock prices traded on the Sao Paulo 
Stock Exchange. It is formed by the stocks with the highest volume traded in recent 

months. Ibovespa's objective is to be the indicator of the average performance of the 

quotations of the assets of greater negotiability and representativeness of the 
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Brazilian stock market (BM&F BOVESPA 2018). The quotation values of the index 

was collected from January 4, 2012 until December 12, 2017 with daily frequency, 

which totalized a universe of 1.502 observations. 

The return at time t is defined as ݎ௧ = [log(௧) − log(௧ିଵ)], for ݐ = 1, … , ܶ, 

where ௧ is the closing if Ibovespa at time t. Initially, all models were estimated using 

sample of 1301 observations, what we called in-sample. For volatility and VaR 

forecasting, a rolling sample scheme is used to forecast the day-ahead, and the 

models are fitted using the original samples of the 200 steps initially omitted, fitting 
one by one until you reach the two hundredth day of forecast, i.e, the sample is rolled 

forward and the models are re-fitted using the original samples (1401 + ݅, ݅ ݎ݂ =

1, … ,200) of the 100 steps (or 10 months) initially omitted The 200 observations 

ahead we called out-of-sample. 

Either Ibovespa than return of Ibovespa are shown at time Figure 1. It can be 
noticed that the sharpest fall by all time horizon occurred at 2016, a year of much 

political turbulence at Brazil, what can have some impact on the economy and the 

stock market. Observing the returns, it can be noticed some peaks, both high and low 

in many parts of the series, which demonstrates some volatility on the series. 

Summary descriptive statistics for the series are shown at Table 1. The 

negative value of mean shows that the Brazilian market suffered with some retraction 
between the analyzed periods. The standard-deviation shows a slightly volatility on 

the Brazilian stock market. The kurtosis follows a platykurtic line. The skewness 

indicates that the series have a position at the right of the normal distribution. Both 

indicates that the series does not have a normal distribution behavior, besides a “fat-

tailed” distribution, which is a stylized fact in financial series.  

 
Table 1 – Descriptive statistics of Log-returns of Ibovespa, daily, between 2012-2017 

Statistics Ibovespa's log-return 
Mean -0.020 
Median 0.008* 
Minimum -0.083 
Maximum 0.101 
Standard deviation 0.015 
Kurtosis 2.396 
Skewness 0.026 

* Values multiplicated for 100 
Source - Authors 
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First, GARCH-type (GARCH, EGARCH and GJR) and the MRS-GARCH 

models are fitted using Normal, Student t and GED distributions, for in-sample. The 

AIC criteria was used to determinate the distributions. The results of the best models 
selected by LL and AIC criteria are showed at the Table 2.  

 
Table 2 – Estimation of GARCH-type and MRS-GARCH models (in-sample) with daily bases 

between 2012-2017 
 

Ibovespa GARCH (st) GJRGARCH (st) MRS-GJRGARCH (st) 
 Estimate p-value Estimate p-value Estimate p-value 

ߙ
(ଵ) 0.000 0.000 0.000 0.000 0.000 0.000 

ଵߙ
(ଵ) 0.049 0.000 0.009 0.000 0.000 0.000 

ଶߙ
(ଵ) - - 0.073 0.001 0.000 0.000 

 0.924 0.000 0.935 0.000 0.345 0.000 (ଵ)ߚ
߭ଵ(ଵ) 14.326 0.000 14.737 0.160 5.214 0.000 
߭ଶ(ଵ) 1.052 0.000 1.047 0.001 0.780 0.000 
ߙ

(ଶ) - - - - 0.000 0.000 
ଵߙ

(ଶ) - - - - 0.008 0.000 
ଶߙ

(ଶ) - - - - 0.075 0.000 
 0.940 0.000 - - - - (ଶ)ߚ
߭ଵ(ଶ) - - - - 18.020 0.000 
߭ଶ(ଶ) - - - - 1.097 0.000 

 0.998 0.000 - - - - (ଵ)݁ܿ݊݁ݐݏ݅ݏݎ݁ܲ
 0.999 0.000 - - - - (ଶ)݁ܿ݊݁ݐݏ݅ݏݎ݁ܲ
ܴ݁݃݅݉݁(ଵ)  - - - - 0.241 - 
ܴ݁݃݅݉݁(ଶ) - - - - 0.759 - 

LL: 3600.964  3607.669  3610.496  
AIC: -7191.928  -7203.338  -7192.992  
(st) skewed t-student distribution;  (ଵ): First Regime;  (ଶ): Second regime 
Source – Authors 
 

Analyzing the GARCH-type models, it can be noticed that all the parameters of 
the models achieved statistical significance at 1%. Assessing the GJR model, despite 

the asymmetry parameter is statistically significant, there´s no presence of leverage 

effect. All the single regime models showed a high persistence of volatility in their 

estimates. 

Looking the MRS-GARCH, as happens in the single models, all the 

parameters achieved statistical significance at 1%. The model shows either leverage 
effect and asymmetry only at the second regime by the parameter ߙଶ > 0, besides a 

behavior of volatility impacted by past shocks, by the parameter ߙଵ > 0, being this 

characteristic stronger at second regime of the series. Considering the persistence, 

the second regime stands out first because β is extremely higher. It can be noticed 
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that the first regime of Ibovespa is present less than the second, what means that the 

more volatile, persistent and asymmetric regime figures longer. 

Considering the regime persistence, the second performed the most part of 

the time, what means that this is the more apparent for the series. In relation of 
volatility, both regimes showed great persistence, what indicates a volatility with long 

memory.  

Finally, with the best models estimated VaR at 5% and 1% forecasting is 

evaluated for the out-of-sample observations. The Table 3 shows the results of 

backtesting and predictive accuracy of each model estimated, 200 steps ahead. 

 
Table 3 – Backtesting and predictive accuracy for VaR (out-of-sample) with daily bases 

between 2012-2017 
 

 
Ibovespa 

GARCH (st) GJRGARCH (st) MRS-GJRGARCH (st) 
VaR VaR VaR 

5% 1% 5% 1% 5% 1% 
Backtesting for VaR     
LRuc 1.954 0.619 1.054 0.619 1.954 0.000 
p-value 0.162 0.432 0.305 0.432 0.162 1.000 
LRcc 2.327 0.629 1.564 0.629 2.327 0.041 
p-value 0.312 0.730 0.457 0.730 0.312 0.980 
AE 0.600 0.500 0.700* 0.500 0.600 1.000* 
ADmean 0.017 0.070 0.014* 0.070 0.017 0.034* 
ADmax 0.080 0.070 0.080 0.070 0.078* 0.066* 
DQ 4.727 0.559 3.469 0.558 2.118 1.900 
p-value 0.579 0.997 0.748 0.997 0.909 0.929 
Loss (x100) 0.164 0.069 0.167 0.070 0.166 0.072 
RMSE (x100) 0.558 0.491 0.559 0.492 0.546* 0.461* 
MPE 7.489 2.132 7.442 2.141 7.327* 1.996* 
Out-of-sample evaluation of 200 1-day-ahead VaR predictions (200 steps forward, with re-
estimation the model at each 1 step); * Indicates the model with the better statistic parameter 
considering at least 5%. 
Source - Authors 

 

Analyzing the backtesting of VaR at 5%, it can be noticed that single GARCH-

type model represented by GJR-GARCH two criteria against only one of MRS-

GARCH, considering only the tests that have p-value at least of 5%. However, when 
evaluating the DQ criteria, which indicates a benchmark, no model outperformed 

other by the level of 5%, i.e, statistically no model proved to be superior.  
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However, with VaR at 1%, MRS-GARCH showed a slightly superiority against 

the other single GARCH-type models. The regime switching outperformed in 3 

criteria at 5% against any of the single. As occur for VaR at 5%, evaluating the DQ 
criteria, no model outperformed other, which indicates that no model proved to be 

statistically superior than the other. 

Now, when we analyze the predictive accuracy it can be noticed that the MRS-

GARCH outperformed the single GARCH-type models in all the criteria, which 

indicates that the Markov switching regimes model performed a more closely to 

perfection forecast compared to other.  

These results find support on the literature. Zhang, Yao & He (2015) study 

shows that the MRS-GARCH was accurate to forecast daily returns, but loses his 

superiority on weekly and month returns. Iqbal (2016) finds report that the single 

GARCH-type models are more accurate to forecast at long horizon (22 day-ahead) 

and the MRS-GARCH at short horizon (1 and 5 day-ahead).  
Despite there’s no benchmark model, switching regime model seems to be 

slightly better considering most of the statistical criteria. Yet, because there weren’t 

statistically robust results, there is no way to say that the switching regimes GARCH 

models outperforms the single, even evaluating 200 steps-ahead forecasting, which 

theoretically could benefit a model that operates in multiple equations as occur in 

MRS-GARCH. 
 
4 CONCLUSION 
  This paper evaluated if the Markov switching regime GARCH models can 

outperforms the single GARCH-type models on forecasting. To achieve this 

objective, it was used several statistical criteria to evaluate which model had more 

solid VaR and predictive accuracy, using the Brazilian stock market – Ibovespa –  

between 2012 and 2017 as study scope. 

First, we defined the in-sample and out-of-sample pattern and determine a 200 

steps-ahead (10 months) forecast, with model re-estimation at each step-ahead. 

Then, using AIC and Logarithm of Likehood criteria, GARCH-st, GJR-GARCH-st and 

MRS-GJR-GARCH-st models were elected the better on in-sample evaluation. 

The out-of-sample forecasts showed that the single GARCH-type models had 
a slightly better performance on VaR at 5% and the switching regime models had a 
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slightly better performance on VaR at 1%. The MRS-GARCH performed better on the 

predictive accuracy considering the most of statistical criteria. However, the DQ 

criteria – which delimitates the benchmark model – showed that no model 

outperformed other, which indicates that it can’t be determined a better model for 
forecasting considering the Brazilian stock market. 

Other studies found no consensus on the ability to forecasts of the several 

GARCH-type models, being that the switching regime models performed better in 

some situations and the single regime models in other, which demonstrates that the 

results of this paper find support on the literature. 

The main limitations of this work were the lack of comparison on other stock 
markets, which could show some difference on regimes and supports a model as 

superior than other for forecasts. The main suggestion for future research is to 

compare several indexes, specially those that have very different regimes, which can 

show if the switching regimes model beats the single regime for forecasting. 
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