

Revista de Sistemas e Computação, Salvador, v. 8, n. 1, p. 23-55, jan./jun. 2018

http://www.revistas.unifacs.br/index.php/rsc

Development of API for autonomous navigation of robotic

platform

Antonio Valerio Netto
1
, Guilherme Orlandini

2
, Luiz Eduardo G. Martins

3

1
DT CNPq

Brasília, Brazil

2
 Integrated Colleges of Ourinhos

Ourinhos, São Paulo – Brazil

3
 Institute of Science and Technology

Federal University of São Paulo, São José dos Campos, SP – Brazil

antonio.valerio@pq.cnpq.br, guilherme.orlandini@gmail.com,

martinsleg@hotmail.com

Abstract. The purpose of this article is to present the development of an

Application Program Interface (API) based on the OpenCV library for

RoboDeck. RoboDeck is a mobile robotic platform of Brazilian manufacture

for the areas of education and research. This API was developed to facilitate

to the students and researchers, the creation of new applications for the

control of the mobile robot. To test this API was developed an application for

the autonomous navigation using computer vision.

1. Introduction

Throughout the years, human beings dared thinking and dreaming about the day when

machines would have features and skills so near to those found in humans, which would

reach the point of do tasks like them. Since operational tasks as sweep a floor, drive a

car; organize objects in a house; or tasks related to human skills (sensitive and

cognitive) as listening, seeing, speaking and moving.

Multidisciplinary knowledge has been giving support to researchers to

accomplish that aims. Sciences as computing, electrical engineering, mechanics, social

sciences and those that study the human behavior have been assisting to robot’s

creation. However, even with all advances reached by these sciences, the human being

did not reach the goal of creating a machine which has all physical and cognitive skills

inherent to a human being. That still seems far.

Although that seems far, important advances had been obtained in the latest

decades. There are machines with skills (still with considerable limitations) of listening,

take decisions, speaking, seeing and interaction with objects and human beings. Among

the skills mentioned previously, the one related to robot vision (specifically computer

vision) have been target of several researches in the computer science field [Lopes

2010] [Rivera-bautista et al. 2012] [Zhao and Jia 2009] [Nehmzow 2003]. Starting with

the knowledge of how the human vision works, researchers have been trying to create

solutions to turn that skill possible to robots in a way of a tridimensional objects

23

Revista de Sistemas e Computação, Salvador, v. 8, n. 1, p. 23-55, jan./jun. 2018

http://www.revistas.unifacs.br/index.php/rsc

perception of a robot in an environment and the association of those objects to a

previous knowledge is able to accomplish nicely. The referred task is quite complex,

this task not only consists in to capture images through retina in ocular globe, but also

associates all knowledge acquired for the human being throughout the whole life.

Vision-based navigation of robots has been an active field of research in the past

decade. There are many challenges on developing vision computer systems due the

needs of a comprehension of the environment in which it is placed. That challenges can

also vary considering indoor or outdoor environments. Outdoor environment is more

complex to modeling and implements a good vision-based navigation due a lot of

variables, but small structures that exists in that environments such as roads, lane

markings, etc.; help reduce the model complexity [Xie and Lu 2013]. On the other hand,

indoor environments are relatively easier to model considering the inherent structure in

buildings, thus becoming mathematically tractable as compared to the outdoor

environments. The real challenge in indoor navigation is the localization of the camera

system, which involves the vision system estimating its location in the environment in

which it is navigating [Quigley et al. 2009].

Navigation may be vaguely defined as the processing of finding a suitable and

safe path between a start and a terminal point for a robot to traverse [Liang et al. 2016].

Visual navigation as specific application to mobile robots has brought countless

contributions. This is mainly due the rise of possibilities for their application in

autonomous mobile robot navigation. Traditionally, navigation solutions primarily

based on vision are typically used to the Autonomous Ground Vehicles (AGV) [Linder e

Arras 2016].

Several tools have been built aiming to make easier the building of computer

vision applications. One of them is the OpenCV library [Budiharto 2014] [Culjak et al.

2012] [Shrivastava 2013] [Szabo and Gontean 2015], which has functions of computer

vision, motion detection, tracking, image patterns recognition and camera calibration

that contributes to create computer vision applications without requiring the use of low-

level code [Suarez et al. 2014]. That library was adopted in this work.

On the other hand, there is the mobile robot. A mobile robot is an automatic

device, which is able to move inside a pre-defined environment and interact with that, so

the way that the robot will move in the environment must be considered. That device

needs software, which makes possible reach some autonomy. In this work, the mobile

robot object of studies was the RoboDeck. RoboDeck [XBOT 2015] is a mobile robot

wheeled that can be expanded by addition of robotic parts as grabs, mechanical arms,

sensors and other devices. The robot was developed and released in 2010 by a Brazilian

company called XBot (www.xbot.com.br), aiming to provide the educational

development, mainly in the field of mobile robot research.

Is intended in this work the development of computer vision applications using

the OpenCV library, and also integrate these applications with RoboDeck, providing a

partial level of autonomy and bringing some contributions related to research in

software development and control of mobile robots.

24

Revista de Sistemas e Computação, Salvador, v. 8, n. 1, p. 23-55, jan./jun. 2018

http://www.revistas.unifacs.br/index.php/rsc

In the context of vision-based navigation the problem of obstacles is often

mentioned. As the RoboDeck is a relative new platform, software applications are

necessary to provide autonomy for the RoboDeck to perform some tasks. Although that

robot has several resources, the fact of it does not have applications that can explore its

resources results in a poor use of the robot. The approach of this works is related to the

use of the OpenCV library in order to create computer vision applications [Choset

2005], it will help researchers to use that knowledge on future research with RoboDeck,

and also on others robotic platforms [Yeoun-Jae et al. 2011].

In this work, was also designed and developed an API, which provides high-

level robotics command for communication with the MAP (High Performance Module)

of RoboDeck, in order to make the development of applications for the RoboDeck more

productive, simple and fast. Although the robotic hardware chosen for the developing of

this work was RoboDeck, the reached results related to use of elements such the

OpenCV library, histograms, appearance-based match, can be easily reused for others

robotic platforms [Yang et al. 2010] [Fernández-caramés et al. 2014].

The main goal of this work is to present and discuss the development of

computer vision applications based on the histogram technique for the RoboDeck

platform using the OpenCV library, as well to integrate those applications with that

robot, providing then some autonomy for the robot. The specific goals for this work are:

• To validate the RoboDeck for the use of computer vision application techniques;

• To create an API that supports the development of applications that

communicates with the RoboDeck High Performance Module;

• To create applications for autonomous navigation based on the color recognition

and captured objects from the acquired image using the created API.

The developed activities begun with studies related to Computer Vision. From

those studies, was observed the OpenCV library would be indicated for computer vision

applications development. Based on the collected materials about the OpenCV library,

studies and developing of simple applications (using Visual Studio 2008 IDE) were

performed. Analyzing the results, it was noticed that the OpenCV had features that

would allow the development to be more practical and fast. After advances related to the

development of computer vision applications, the source code was modified to perform

at Linux operation system (Debian).

Once understood the concepts related to computer vision, was necessary to

research about mobile robots and vision-based navigation. It was performed also studies

about RoboDeck (mobile robot object of study aiming the development of computer

vision application). It was consulted the RoboDeck manual for an understanding of the

robot´s operation and how could it be integrated with computer vision applications. It

was also accomplished practical experiments with that robot.

Based on the understanding of that robot´s architecture and its protocol

communications, was developed an API using C++ language aiming make easier the

task of send robotic commands to MAP, facilitating the integration of computer vision

25

Revista de Sistemas e Computação, Salvador, v. 8, n. 1, p. 23-55, jan./jun. 2018

http://www.revistas.unifacs.br/index.php/rsc

applications with the robot. That API was firstly tested with MAP running on simulated

mode. Preliminary tests were conducted based on the mockup hardware, which was a

board that has hardware with a way of operation very similar to RoboDeck. After

concluded the mentioned activities, the following steps were performed:

• To use the Open-Loop approach for image capture and robotic command

sending to the robot;

• To use a reactive approach, where the robot acts according to the information

received by sensors;

• The vision-based navigation would be in an indoor way, without map, and using

appearance-based match;

• The appearance-based match would be viable generating histograms from

images and performing comparisons between histograms.

2. Computer Vision and OpenCV Library

For human being, the visual world perception seems to be simple. We are able to

understand and discern easily colors, textures, shadows, luminosity and other visual

elements. In a family photo, humans are able to discern where the people are (whether

they are or not their relatives), the apparent age, and also to imagine the emotional status

of a person based on his facial expression. That task is not so simple when is thought

about computers. The same image, saw under a different luminosity, can be interpreted

in a completely different way by a computer.

The images contained in the Figure 1 are related to the same door; however, the

right door has at the bottom a brightness caused by incidence of sunlight. In spite of

those images are under different luminosities, is simple for a human being conclude that

is the same image, by the reason that human beings generally has a full knowledge about

images, variations and learning related to, realizing easily being that images related to

the same door. However, for a computer, those two doors are entirely different, what

means, those are different "images". While human has an entire knowledge about

objects, a computer captures through a camera only images (those images needing to

pass by a process that convert it to a numerical data, it being able to be interpreted by a

computer).

Figure 1. Door without light reflex and door with light reflex

26

Revista de Sistemas e Computação, Salvador, v. 8, n. 1, p. 23-55, jan./jun. 2018

http://www.revistas.unifacs.br/index.php/rsc

According to Bradisk and Kaehler (2008), Computer Vision is defined by the

data transformation of an image originated by a camera in some kind of decision or in a

new way of representation. Transformations are performed based on input data to

accomplish some particular aim, as: Find out whether there is a human being in the

scene, how many objects there are in the scene, capture a human face image and verify if

that human has authorization to be in that refereed place, and others information about.

A new representation of the image based on transformations can be done using several

techniques, such as change a colored image in gray scale, to smooth the image in order

to take out the luminosity, obtain the camera motion done from the image sequence, etc.

In other definition, Shapiro and Stockman (2001) affirm that the computer vision

goal is to take decisions about physical real objects from scenes based on captured

images. When the image is digitized, it is stored in a computer memory as a data matrix,

where each element represents an image pixel. That numerical matrix is so, processed

by computer to extract the wanted information from the image [Dawson-howe 2014].

The data matrix related to the image could have its values changed for a digital image

processing operation when necessary. Once changed that values, the image will be

consequently changed. There are many operations related to digital image processing

that can be used at several situations and needs. Among those operations, we can

mention the filtering and smoothing operations, and operations related to histograms.

In computer vision, an obstacle that must be considered about the recognition of

objects in a scene is external factors as lighting, where a simple solar reflex that focus

on an object can become more difficult that recognition. Thus, the main goal of filtering

and smoothing techniques is to process a determined image resulting in an image more

suitable than the original image for a specific application. Those filters are categorized

in high-pass and low-pass filters [Russ 2011].

The histogram of an image registers the distribution of frequency of the levels of

gray of an image. Imagining an 8-bit-image, it´s possible think in a table with 256

entries, indexed from zero to 255. The darker gray level is represented by zero, and the

clearer gray level is represented by 255.

The Figure 2(a) shows a data matrix related to a 25-pixel-image. In that case, the

picture has gray level pixels going from zero to three. In the Figure 2(b), there is the

count and classification of those pixels. As is possible to realize, in h(I) there is 6 pixels

with 0 gray level, 9 pixels with 1 gray level, 4 pixels with 2 gray level and 6 pixels

being of 3 gray level. In the Figure 2(c), a graphical histogram was generated based on

counting and classification of pixels. In that histogram, there are four bins (gap or

segment of the histogram), which are related to each gray level found in the image. The

gray level more frequent has the 1 gray level, thus, the bin 1 is showed having a biggest

length in the histogram.

27

Revista de Sistemas e Computação, Salvador, v. 8, n. 1, p. 23-55, jan./jun. 2018

http://www.revistas.unifacs.br/index.php/rsc

Figure 2. Histograms related to images from an automobile and a part from a
window [Hongming et al. 2005]

The histograms have a large application in computer vision. Through them is

possible as an example, compare the degree of similarity between two images by

comparing their histograms. Using histograms is possible have object´s classification,

which consists in an identification of an object in a scene. In the Figure 3, is showed

histograms related to two images. Being the histograms inherent to the images different

each other, is possible to conclude not be the same object.

OpenCV is an open source programming library used for development of

computer vision applications. Several researches have been adopting this library to

perform works associated to Computer Vision [Jahne and Hausseker 2000] [Chaczko

and Braun 2010]. The Intel Corporation developed the OpenCV using the C and C++

languages.

Figure 3. Door without light reflex and door with light reflex

The OpenCV library was idealized in order to become computer vision

accessible to users and programmers in areas such as real-time-computer-human

interface and robotic. The library is available with the source code and binaries

optimized for Intel processors. When running, an OpenCV program calls automatically

a DLL (Dynamic Linked Library) that detects the model of processor and loads an

optimized DLL for the one. With OpenCV package is offered the library IPL (Image

28

Revista de Sistemas e Computação, Salvador, v. 8, n. 1, p. 23-55, jan./jun. 2018

http://www.revistas.unifacs.br/index.php/rsc

Processing Library), which OpenCV depends on partially, besides the documentation

and a group of demo codes [Ching et al. 2009].

The OpenCV has about 500 functions related to several fields of computer

vision, such as processing image functions, moving detection and tracking, pattern

recognition and camera calibration. They are high-level functions that make easier

solving complex problems in computer vision. The Figure 4 shows an overview of

OpenCV architecture.

• CXCORE: It has data structures, functions for data transformations, object

persisting, memory management, error manipulation, besides text, draw and math

functions.

• CV: It has processing image functions, image analysis structure, functions to

tracking and moving detection, patterns recognition and camera calibration.

• ML: It has function for statistics classifications and tools for clustering.

• HighGUI: Module responsible for providing interface control functions and

input devices. Is important observe that besides the 4 modules mentioned, there is

also a module called “CvAux”, which is related to vision algorithms, however, it

was in an experimental phase.

Figure 4. Basics structure of OpenCV Library [Adept 2011]

3. Mobile Robot

Siegwart and Nourbakhsh (2004) says that the mobile robotics is a field of study

relatively recent, which after important decades of evolution, remains as an interesting

research subject due to wide applicability in different domains and its relevant aspect in

economy and technology.

In a recent past, when it was mentioned about robots, people imagined industrial

robots and robotic-mechanical-arm support production and manufacturing. Actually, the

attentions are towards to mobile robots, which are able to move in an environment

which they are [Chen et al. 2009]. For a mobile robot be considered autonomous, it must

have the capacity of locomotion and make decisions without human intervention.

Hence, some aspects must be considered, such as capacity of perception (sensors are

able to gather information about the environment where the robot is), capacity of act

(actuators and motor able to perform actions, for instance a robot displacement in an

environment), and intelligence (capacity for deal with different situations, to solve and

29

Revista de Sistemas e Computação, Salvador, v. 8, n. 1, p. 23-55, jan./jun. 2018

http://www.revistas.unifacs.br/index.php/rsc

perform complex tasks) [Mcginn et al. 2015]. Although there is not a final taxonomy for

classify mobile robots, it is possible classify those according some characteristics.

According Chen, Chen and Chase (2009), the mobile robots can be classified in three

big groups: terrestrial, aquatic and aerial.

Figure 5. Terrestrial, aquatic and aerial mobile robots [Chen et al. 2009]

Robots can also be classified according the autonomy level:

• Tele-operated Robots: The operator, using a control device, sends commands for

the robot do tasks.

• Semi-Autonomous robot: The operator sends a macro command to robot, and

the one performs tasks being able of making decisions.

• Autonomous Robots: the robot performs tasks without human intervention,

making his own decisions based on received information by its sensors.

The autonomous intelligent navigation of robots consists on robot locomotion

inside a determined environment, so that it has a capacity of detecting obstacles and

deflecting during a course. In order to reach this goal, several real-world properties must

be considered [Russel and Norvig 1995]. The planned, reactive [Brooks 1991], hybrid

[Tomatis et al. 2001] approaches, and the using of maps [Thrun and Bucken 1996],

elucidates way to line up real-world properties with robotics navigation.

The vision-based autonomous navigation systems consist of a robotic vehicle,

image-capture devices, and actuators that allows robotic vehicle act under the

environment. According to Kundur and Raviv (1998), the building of vision-based

autonomous navigation systems must consider the following issues:

• What is the relevant information to be extracted from a sequence of images?

• How to extract that information from bi-dimensional image sequence?

• How to generate control commands to the robotic vehicle based on the extracted

visual information?

Extensive research has been done in the field of vision-based autonomous

mobile navigation. In the work of Andresen, Jones and Crowley (1997) is proposed an

indoor-navigation system, being necessary a previous knowledge about the indoor

30

Revista de Sistemas e Computação, Salvador, v. 8, n. 1, p. 23-55, jan./jun. 2018

http://www.revistas.unifacs.br/index.php/rsc

environment (using previously acquired images). Guzel (2009) presents a proposal of a

system navigation where is attached to a robot a PTZ (Pan-Tilt-Zoom) camera that

works as a primary sensor. The goal of that work was the robot performs navigation in

an indoor environment, without any previous knowledge about that one. In the Valasek

et al. (2005) proposal, was used a vision-based navigation to achieve the refueling of

unmanned aircraft process. Johns and Yang [Johns and Guang-zhong 2010] presented

and approach of scene associations for autonomous robotic navigation, registering

landmarks associated to a group of images that formed a scene. Saunders et al. (2015)

proposed an algorithm that uses information from a directional camera to find features

that refers wall in an indoor environment. The goal was do the robot stop when it was

detected a wall near to the robot, by using only a camera as a sensor,

Change and Chuang (2011) presented an approach of robotic navigation and

building-map using laser projecting by a mounted projector under the mobile robot, and

other camera mounted on the walls of an indoor environment. A 3d-map was built in

real-time and used to do the navigation inside the environment. The referred map was

built based on gathered coordinates from grouped information given by both camera and

laser projection. The Chang and Chung´s work was done based on the technique called

SLAM (simultaneous localization and mapping), that was resulted by the work of Chen

et al. (2010).

According Moravec (1980) is essential for a vision-based navigation system

some knowledge about the environment using the visual information, and there is two

different approaches for use that visual information. One based on Open-Loop control,

and other based on Closed-Loop control.

• Open-Loop Control: on this approach, the image information extraction and the

robot control are two tasks that occur at various times, where the snapshot and the

image processing are done firstly, followed by the generating of a control

sequence for the robot. That approach is used in this present work.

• Closed-Loop control: Approach whereas the snapshot and image processing as

the control sequence generating for the robot are done simultaneously. Based on

the camera positioning so that decreasing the error rates related to displacement

speed and positioning.

According Desouza and Kak (2002), the vision-based navigation is one of the

most important navigation methods, and two techniques reached advances associated to

that: vision-based indoor navigation and vision-based outdoor navigation.

Images are pre-stored in the robot memory as templates (models). The robot

locates itself and navigates around the environment comparing what is captured by

camera with the previously defined template. As using examples of this approach, there

is the work of Matsumoto and Ito (1995), where a sequence of images was pre-stored

working like a robot´s memory. The robot ran the same route comparing the captured

image by camera with the pre-stored images. Jones, Andresen and Crowley [20] created

a way for templates be associated to actions that the robot should perform. When an

image captured had a matching in a determined level, the robot performed the action.

31

Revista de Sistemas e Computação, Salvador, v. 8, n. 1, p. 23-55, jan./jun. 2018

http://www.revistas.unifacs.br/index.php/rsc

Ohno, Ohya and Yuta (1996) done practically the same of Jones, however, the robot

performed the actions faster.

Ukida, Terema and Ohnishi (2012) used the matching-appearance-based

technique to give to a robotic arm (that is equipped with two cameras) the capacity for

do object-tracking. Mishra et al. (2013) used the same technique to provide to a robot

the capacity of tracking and chasing objects. The vision-based navigation is still an open

field when mentioned about research. In an autonomous robot navigation associated to

unknown environment, is necessary considering several variables, as relate to computer

vision as relate to navigation. The image processing has considerable importance for the

success of vision-based navigation.

Currently there are several robotic hardware, used in research groups around the

world. Among them, it could be highlighted the hardware Pioneer 3 [Adept 2011],

IRobot Create [IROBOT 2011], Lego Mindstorms NXGT [LEGO 2012], RoboDeck

[XBOT 2015] and others. At this work, it was used the RoboDeck Robotic Hardware.

The RoboDeck is a Brazilian robot, developed by XBot Company located in São

Carlos, state of São Paulo - Brazil. The XBot Company is specialized in robot

manufacturing for education, researching and developing. Among the RoboDeck´s

features, it has Wi-Fi communication, Bluetooth and ZigBee, camera, infrared and

ultrasonic sensors, GPS, compass, accelerometer, among other inputs. RoboDeck can

reach speed between 3 and 5 km/h and have an approximated weight of 15kg; where the

weight variation is related to the number of batteries [Quigley 2009].

The RoboDeck´s software is composed by firmware written in C/C++ of

microcontrollers in low level. In a high level, it has the high-performance module

instructions group, which allows interact with autonomous systems or external

controllers (applications), besides SDK´s, one of then written in C# and other in Java

ME, for the control application development through peripherals.

The essential RoboDeck´s hardware is composed by two microcontroller

modules: A ARM9 microcontroller for basic functions as moving and data sensors

collecting, and a Jennic microcontroller for communication management with interfaces

and ZigBee network. Besides, the robot has a NanoITX board with a high-performance

module integrated with the operating system Debian Squeeze. The optional hardware of

RoboDeck (also called High-Performance Board) has the goal of providing autonomy

and broadband communication for the robot.

32

Revista de Sistemas e Computação, Salvador, v. 8, n. 1, p. 23-55, jan./jun. 2018

http://www.revistas.unifacs.br/index.php/rsc

Figure 6. The RoboDeck Hardware [XBOT 2015]

Figure 7. RoboDeck´s High-Performance Board

That board is endowed of 4 GB-flash-memory (that contains Linux system) and a

processor that can reach 500 MHz of clock. The board supports video, keyboard and

mouse, allowing the robot being used like a computer. Under this board, also works a

software called “Módulo de Alta Performance” (MAP), in English language, "High-

Performance Module".

The MAP allows applications controls the robot essential hardware through

commands sent directly to MCS - "Módulo de Controle de Sessão" (in English

language, Session Control Module). The MCS implements the concept of session to the

commands from applications, in order to not allow robot reply for two applications

simultaneously. The MCS also is responsible for authentication of applications besides

to send directly for MCR (Módulo de Controle Robótico - Robotic Control Module) the

robotic commands sent by MAP. The Figure 8 presents an overview of the RoboDeck’s

architecture, showing its connection with the essential and optional hardware.

33

Revista de Sistemas e Computação, Salvador, v. 8, n. 1, p. 23-55, jan./jun. 2018

http://www.revistas.unifacs.br/index.php/rsc

Figure 8. RoboDeck’s architecture overview [Munoz 2011]

Two factors were fundamental for the choosing of RoboDeck in this work. The

first one, is related to RoboDeck be a Brazilian robot (which makes more easy aspects

relate to support and maintenance). As a second factor, was considered a better

processing capacity when compared with others robotic hardware.

4. Robodeck´s API for Communication With Map

For the RoboDeck performs elementary actions as moving forward, back, turn and read

sensors and other actions, is necessary to send commands to the robot. Those command

sending can be done by MAP. Hence, for an application executes requests related to any

robot action, that one must send commands to MAP. Presently, this command sending is

done in C language, using low-level commands. This factor can become the application

development more complex and prolonged.

Considering the factor mentioned, was thought as viable to develop an API that

made the robotic application development more efficient and productive, so that

developers do not need to be worried about details relate to communication between the

application and the robot. In order to develop this API, was important the reading of

RoboDeck´s manual and documents, mainly a document called “Protocolo de

Comunicação Externa” (External Communication Protocol). Those documents are

available for download at the XBot´s website (www.xbot.com.br)

The API was designed with Object-Oriented concepts (using C++ Language),

where each class is responsible for a group of functions inherent to RoboDeck. Once

Linux environment is offered with the high-performance board, it was designed for that

environment. The API design is illustrated in the Figure 9 through a UML class

diagram. This figure shows how the classes were organized according to specific

functions that are the following:

• RoboDeckInfo – class responsible for returning general information about the

robot and commands session;

• RoboDeckMoving – class that contains methods responsible for robot

movement;

34

Revista de Sistemas e Computação, Salvador, v. 8, n. 1, p. 23-55, jan./jun. 2018

http://www.revistas.unifacs.br/index.php/rsc

• RoboDeckSensors – class that contains methods related to use of sensors;

• RoboDeckLocation – class that contains method used for gathering positioning

information;

• RoboDeckMap – class that contains method related to information from MAP;

• RoboDeckCam – class that contains method for using camera;

• RoboDeck – class that contains low-level commands responsible for

communication with MAP. This class is available by XBot Company;

• Controller – is inherent to the application that will use the API. In this work, the

class Controller will be the application of computer vision.

Figure 9. RoboDeck API class diagram for communication with MAP.

The classes RoboDeckMoving and RoboDeckInfo were implemented in this

work. The other classes were designed but not implemented yet. Following, there are the

names of the methods contained in the classes RoboDeckMOving and RoboDeckInfo,

and explanations about that ones. As mentioned previously, the RoboDeckMoving class

has methods responsible for robot movement. To have a better comprehension of the

advantages given by that API, will showed two code blocks used for doing the

RoboDeck to move forward. The first code showed was used "before" the creation of

API. Moreover, the second is the code that uses the API. It can see observed following:

35

Revista de Sistemas e Computação, Salvador, v. 8, n. 1, p. 23-55, jan./jun. 2018

http://www.revistas.unifacs.br/index.php/rsc

Code used for RoboDeck to move forward (before the creation of API)

Code used for RoboDeck to move forward (after the creation of API)

5. Developing of Vision-Based Navigation Application

A vision-based navigation application was developed in this work having the goal of

processing; interpreting the images captured from RoboDeck´s camera in order to

proving to it the possibility of make decisions related to environment navigation. The

Figure 10 presents a sketch of RoboDeck´s navigation in an indoor environment being

the vision-based application running. It was pre-stored in the application, for futures

36

Revista de Sistemas e Computação, Salvador, v. 8, n. 1, p. 23-55, jan./jun. 2018

http://www.revistas.unifacs.br/index.php/rsc

comparison, three images, which can be visualized in the Figure 11. Those three images

are mentioned in this work as templates.

 The Figure 11(a) presents the signal to turn left. When the application performs

the recognition of that signal through the camera and the robot is near by 20 centimeters

of the signal, the application will to send commands to the robot (through the API) so

that the robot turn left. The same thing will occur related to the Figure. 11(c), however,

the action will be turning right. The Figure 11(b) refers to a signal used to stop.

The signals shape had been chosen purposely having the goal of become the

recognition more accurate. As the chosen technique for the signal recognition was

comparing by histograms (generated from spatial black pixel distribution in an image),

the similarity between that signals can decrease the accuracy (factor observed during the

performing of the Experiment 1 of this work with the signals showed in the Figure 12).

For a better comprehension of this issue, there is in the Figure 12, a possible scenario

where there are similarities between different signals.

Figure 10. Sketch of the robot navigation in an environment when running the
application

Figure 11. Signals that can be recognized by the robot

In the Figure 12(a) and 12(b), there are the chosen arrows for be used in the

vision application. In the Figure 12(c) and 12(d), there are the histograms related to the

arrows. Following, it will explain the algorithm used for the vision-based navigation

application and pieces of relevant codes related to the arrow recognition.

37

Revista de Sistemas e Computação, Salvador, v. 8, n. 1, p. 23-55, jan./jun. 2018

http://www.revistas.unifacs.br/index.php/rsc

Figure 12. (a) e (b) Arrows chosen as templates. (c) and (d) Histograms related
to the chosen arrows

After the declarations of used libraries, declarations of variables, and image

loading of the signals that are recognized by application (templates), a while loop is

started in order to run indefinitely. The algorithm performs the following steps:

1. Inside the loop, the captured image is read frame by frame. One frame is read

in each loop of iteration.

2. The frame is converted in a binary image.

3. The binary image is transferred as a parameter to a method called

SearchObject(). This method search for some object (edge) in the image. In

case of an edge is found, is applied an image threshold, so that to be

considered just the region related to the edge.

4. Is created a new image from the found edge.

5. The template is resized to have the same size of the new image.

6. Once resized the template, is generated a histogram from the template (calling

the DohProjection() method and passing for the one the resized template.

7. The new image and the histogram of the template are sent to matchObject().

8. The matchObject(), having the new generated image and the histogram of the

template, performs the following actions:

8.1 Generates a histogram from the new image (calling the DohProjection()

method and passing for it the new image).

8.2 Compares the histogram of the new image with the histogram of the

template through the cvCompareHist() method.

8.3 Returns a value between 0.0 and 1.0, where 1.0 means 100% of

compatibility between the histograms. In that application based on

experimental tests done, was considered 78% compatibility as enough to

validate the experiment.

8.4 Once recognized the signal, is verified the identified image size. If in the

captured image by camera the signal has a width greater than 160 pixels, it

means the robot is very close to the signal (about 20cm approximately),

38

Revista de Sistemas e Computação, Salvador, v. 8, n. 1, p. 23-55, jan./jun. 2018

http://www.revistas.unifacs.br/index.php/rsc

hence the robotic command related do that signal must be sent to the robot

for the robot turn left, right or stop.

Aiming a better explanation of that algorithm, there is a following activity

diagram in Figure 13.

Figure 13. Activity diagram of vision-based algorithm for navigation

6. Performed Experiments

For reach the goal of developing vision-based navigation application, was necessary the

developing of other applications, as well related experiments to that ones. Based on

knowledge, results and analysis generated from that, was possible to create the vision-

based navigation application [Orlandini 2012].

Experiment 1: Indoor Environment Signal Recognition Application Tests

The first experiment performed was related to indoor environment signal Recognition

application tests. In a first moment, the application only recognized the signals left, right

and stop, not sending commands to robot. The results of experiment running can be

observed in Figure 14.

That experiment was performed aiming observe the signal recognition accuracy.

During the application running, was placed an A4 paper containing arrow signal in front

39

Revista de Sistemas e Computação, Salvador, v. 8, n. 1, p. 23-55, jan./jun. 2018

http://www.revistas.unifacs.br/index.php/rsc

of the notebook webcam. The result was that, even modifying the distance between the

paper and the webcam, the recognition was kept satisfactorily. It was performed also

with right and stop signals. About the environment, was chose for the experiment a

residential room, which had artificial lighting (fluorescent lamp) and windows that

allows solar lighting entering. It was observed that a low lighting can change the results

related to the signals recognition. It was realized so that the signals must receive a good

light incidence to improve the recognition accuracy, however, the excessive incidence of

direct light under the signal can impact in a not accurate recognition, it due to image

saturation or specular reflex (A reflection in which light rays incident and reflected light

rays form exactly the same angle with the surface of the mirror).

Figure 14. (a) terminal with replies given by the application. (b) captured image
from camera (left arrow recognized)

It was also important consider the quality print of signals, once those affects

directly the results related to recognition. A performed test with a printed signal with

low quality impacted in a low precision recognition. For perform this experiment, was

used the following resources: Microcomputer with i7 processor and 8GB RAM; 1.3

Megapixel webcam; Visual Studio 2008 IDE and OpenCV 2.1 Library (both used for

the application and development); and A4 Paper for signal printing. Is important to

highlight that initially the code development took place in a Windows system using the

Visual Studio 2008 IDE, considering the advantages offered by; meantime, for the

experiments 3, 4, 5 and 6, after an initial development has been done in Visual Studio

IDE, the codes related to the experiments were transferred for a Linux system. A few

adjusts were need. Usually, it was associated to library including using the "include"

command. Naturally, it was used the g++ compiler in the Linux system.

Experiment 2: Outdoor Environment Signal Recognition Application Tests

This experiment is similar to Experiment 1 but it was performed in external

environment (outdoor). Observing the Figure 15, is possible see that a left signal was

pasted on the wall. The results of the application running can be observed in the Figure

16.

It was realized the signals recognition kept had been done with satisfactory

accuracy, such as for left signal as the right and stop signals. The mentioned experiment

was performed only during the daylight. For the signals recognition occurs satisfactorily

during the night, would be necessary to provide an adequate artificial lighting. This

40

Revista de Sistemas e Computação, Salvador, v. 8, n. 1, p. 23-55, jan./jun. 2018

http://www.revistas.unifacs.br/index.php/rsc

experiment attests that, with some adaptations, there are future possibilities of using this

application in external environments. The used resource for running this experiment

were the same outlined in the Experiment 1, however, for making the black arrow, was

used a black cardboard. This one was cut in an arrow shape.

Figure 15. Environment used in Experiment 2

Figure 16. Results of the signal recognition application running

Experiment 3: Tests of sending robotic commands application using MAP in simulated
mode

Once developed a recognition signals application, was necessary based on recognized

signals, to send commands to the robot. Analyzing RoboDeck´s manuals and

documents, was realized that robotic commands although efficient, was done by low-

level commands, fact that become the application development hard and prolonged,

hence, was justified the creation of the API.

Both API and the sending robotic commands application could be tested and

validated initially, even without a direct application in the RoboDeck, once the XBot

Company offers the download of the MAP software. This one can be runs in a simulated

mode, without integration with the robot. Hence, it was performed a MAP installation

in Linux system, and done the tests. For code edition and compilation was used both the

tools Nano and g++. During the experiments also was done installation and running

tests of MAP in Ubuntu 10.04 and Ubuntu 11.04. The results were satisfactory.

41

Revista de Sistemas e Computação, Salvador, v. 8, n. 1, p. 23-55, jan./jun. 2018

http://www.revistas.unifacs.br/index.php/rsc

The Figure 17 shows the working of sending robotic commands application and

the replies provided by MAP running in simulated mode. In the Figure 17(a), there are

replies generated by MAP running in simulated mode. The replies are given by

hexadecimal code. The fact of MAP shows a reply in terminal does not guarantee the

correct running by the robot but indicates the sent command by application it has been

received correctly by MAP.

In the Figure 17(b), there are the replies given by MAP after the application has

sent the robotic commands. Is possible to see messages in Portuguese language such as

"Parando Robo" (in English language, "stopping robot"), "moveu" (in English language,

"moved"), among others. Is also possible see in some lines the message "Error:

RoboDeck could not respond to spinRobot command". This means that MAP received

the command but cannot perform because it was running in a simulated mode, and then

is not possible send commands to robot.

Figure 17. (a) MAP running in simulated mode. (b) Running of application that
do RoboDeck performs a determined path

Those experiments also were done using mockup hardware (Figure 18). In these

cases, the application was transferred for the board memory flash, and so performed.

That board has a very similar hardware of RoboDeck, but without wheels and some

sensors.

42

Revista de Sistemas e Computação, Salvador, v. 8, n. 1, p. 23-55, jan./jun. 2018

http://www.revistas.unifacs.br/index.php/rsc

Figure 18. Mockup hardware used to simulate RoboDeck responses

Experiment 4: Tests of Sending robotic commands application to MAP on RoboDeck

Following the tests using MAP in simulated mode, where performed tests on

RoboDeck. For that, it was necessary transfer the sending commands application for the

high-level board of RoboDeck. Is important outline that the referred hardware has

keyboard and monitor connection, fact that allows developers and researches to

programming directly on RoboDeck, like a workstation (Figure 19).

The source-code related to sending robotic application was so transferred to

RoboDeck´s high-performance board by USB port. The same could be edited and

compiled directly in the robot. As RoboDeck has Linux Debian system offered in the

high-performance board, tool to editing and compiling code was available for using.

In the Figure 20, there are pictures related to the sending of robotic commands

by application running into RoboDeck. The robot performed the programmed route

correctly. The environment where the experiment was done, it was the manufacturing

sector of XBot Company. The floor was made by ceramics with some irregularities. Due

the floor has a reasonably slick surface, in the moment that the actuation of motors

occurred for beginning the movement, the wheels skidded lightly, fact that not affected

the achievement of the course.

Figure 19. Mockup hardware used to simulate RoboDeck responses

43

Revista de Sistemas e Computação, Salvador, v. 8, n. 1, p. 23-55, jan./jun. 2018

http://www.revistas.unifacs.br/index.php/rsc

Figure 20. Running the sending robotic commands application in high-
performance board

Experiment 5: Recognition color application tests

As computer vision application generally require a reasonable amount of processing by
processor (mainly that one’s related to image pattern recognition), so it was considered
the possibility of developing a computer vision application that was not so
computationally expensive for tolerate tests directly on RoboDeck, and the robot
behavior was observed based on application running. Once the computer analysis relate
to colors requires a smaller amount of processing when compared to image pattern
recognition applications, was decided to develop a color recognition application.

The application was developed in a way where the green color would be an
indication for the robot to move forward, and the black color would be an indication to
stop. The color recognition application working occurs in a following way:

1. In the main() method, there is a loop. Inside the loop, the captured image by

camera is read frame by frame.

2. Every 10 frames read, is done a frame analysis, searching for black color

pixels or green color pixels. This analysis is done by VerificaCor() method.

3. The VerificarCor() method receives as parameter a frame, and do a

"scanning" pixel to pixel. Each pixel is classified as green or black, based on

a verification of RGB (Red-Green-Blue) properties. In this application, was

considered a pixel as black when the red, green and blue level of pixels was

less than twenty.

4. When the number of green pixels found in the frame reached 20% of the

image, was considered that a green object was in the scene, hence, was sent to

robot a command for moving forward.

Observation: It can see in the stage 2, the analysis related to colors identification

been done each 10 read frames. This is due to trying not to overload the RoboDeck´s

44

Revista de Sistemas e Computação, Salvador, v. 8, n. 1, p. 23-55, jan./jun. 2018

http://www.revistas.unifacs.br/index.php/rsc

processor. The frame-to-frame analysis would become running more slowly. After the

colors recognition application source-code compilation, was tried the first running

inside the robot. In this first running, errors messages related to OpenCV library file

missing were showed. It was realized so that the OpenCV library install would be

necessary.

As the robot had a network interface connection, was possible to connect with

Internet, fact that became easier the download and installation of packages that are pre-

requisites for OpenCV installation. After solved that mentioned pending; was done the

color recognition application running. As observed in the Figure 21, was placed a green

card paper in front of RoboDeck. By identifying the green color, the robot began moving

to forward. By place a black card paper in front of robot, the robot stopped. For having a

better idea of used colors card papers, considering the RGB (The RGB pattern

reproduces several colors through 3 basic colors: Red, Green and Blue) pattern. In this

case: Green: R (19), G(56), B(30); and Black: R (15), G(18), B(15);

It is also important outline that these values can change due the luminosity

environment. In that environment where the experiment was performed, the luminosity

was based on fluorescent lamps. The results related to tests done in this experiment can

be observed at Table 1.

Figure 21. Color recognition application running in RoboDeck

Table 1. Results related to black and green colors recognition

Still mentioning the Table 1, is important to have an explanation about the

column "Average percentage of pixels related to a particular color recognized during

45

Revista de Sistemas e Computação, Salvador, v. 8, n. 1, p. 23-55, jan./jun. 2018

http://www.revistas.unifacs.br/index.php/rsc

attempts". In the first test, with a green object in a 50cm distance of RoboDeck, the

percentage of green pixels found in the image was 81.3%. In the second attempt, the

percentage of green pixels found was 87.4%, and so on until the tenth attempt, which

impacted in an average of green pixel recognition by 85%, considering ten attempts. In

observance of these results, was designed a chart showed in the Figures 22 and 23.

It was also done analysis related to consume both processor and RAM of robot

when running the color recognition application. Was used for this the commands "ps

gaux" and "free", this one’s native from Linux and that respectively shows both

processor and memory consumed. The outputs of this commands run directly under the

Debian system of robot which can be observed in the Figure 24.

Figure 22. Amount of times that the color of object was recognized

Figure 23. Average percentage of pixels recognized relate to a determined color
during attempts

As it possible see in the Figure 25(a), during the color recognition application

running, there were some peaks of processing consume reaching until 70% of processor

capacity. In future experiments, this fact must be considered whether is observed some

behaviors as slow or freezing of applications. Related to memory consume, is

considered that remained low when considered the robot capacity (1GB). The Figure

25(b) shows the memory consumed after a few minutes of application running. During

the monitoring, for few time, the consumer exceeded 84Mb.

46

Revista de Sistemas e Computação, Salvador, v. 8, n. 1, p. 23-55, jan./jun. 2018

http://www.revistas.unifacs.br/index.php/rsc

Figure 24. Average percentage of pixels recognized relate to a determined color
during attempts

Experiment 6: Vision-Based navigation application tests on RoboDeck

After the experiments previously mentioned had been performed successfully, the next

stage was to do the running experiment that would be the main experiment of this work,

where the robot, running a computer vision application, would have autonomy for doing

navigation in an environment. During this vision-based navigation application running

directly on RoboDeck (in the high-performance board), was realized too much slowness

in the response time. The application was demanding too much processing (more than

the application described on Experiment 5), and the processor capacity was not being

enough for answering that demand.

Hence, it was necessary delegate the task related to image processing and signal

identification to an external computer. The Figure 25 shows how that architecture was

planned for running this experiment.

Figure 25. Configuration planned for running the vision-based application on
RoboDeck

The working of that configuration showed in the Figure 26, occur in a following

way:

47

Revista de Sistemas e Computação, Salvador, v. 8, n. 1, p. 23-55, jan./jun. 2018

http://www.revistas.unifacs.br/index.php/rsc

1. An application running directly inside RoboDeck do the one capture image by

webcam (Figure 26-a) and send the image for a microcomputer by wireless

network (Figure 26-b). The image sent is based on an image writing in a

shared directory by microcomputer, of a file related to the last image captured

by RoboDeck.

2. In the microcomputer, the vision-based application kept running, performing

readings and analyzing the file related to the captured image by RoboDeck.

As mentioned previously, the file is in a shared directory, so the RoboDeck

write the image in that shared directory, and the vision application located in

microcomputer read the file.

3. When the application running in the microcomputer identifies the arrow

signals to turn left, right or stop, the application send to RoboDeck a

command to turn left, right or stop (Figure 26-c).

4. RoboDeck runs the command.

It was defined for both RoboDeck and microcomputer respectively the IP

numbers 192.168.1.3 and 192.168.1.101. The configured wireless transmission rate

between RoboDeck and microcomputer was 54Mbps. And was used the SAMBA

software for directory sharing between RoboDeck and microcomputer.

The proposed configuration was set, tested and run the experiment. The image

captured an application that was initialized on RoboDeck, and the signals recognition

application was initialized on microcomputer. So an arrow sign to turn left was placed

in front of the camera, the robot´s wheels turned to left. Once verified that the proposed

configuration could work, was performed an environment preparation for doing actually

the tests with the vision-based navigation application.

As is possible see in the Figure 26, in the way as the proposed environment for

navigation was thought and mounted, the robot should turn left, in sequence turn right,

and finally stop. For that experiment was used Styrofoam plates where the arrow signals

were placed. To supports the Styrofoam plates, wooden boxes were used.

Figure 26. Prepared environment for robot navigation

48

Revista de Sistemas e Computação, Salvador, v. 8, n. 1, p. 23-55, jan./jun. 2018

http://www.revistas.unifacs.br/index.php/rsc

It was done several attempts until the robot performed the course correctly. In the

first attempts, sometimes the robot performed conversions to the left or right of way in

advance just when sighted the arrow sign, so that the one did not move in towards the

next Styrofoam plate. Hence, it was necessary adjustments in the vision-based

application, for that robotic commands for direction changing or stopping was just sent

when the arrow signal seeing had a width above 160 pixels by application. This did the

robot only turn or stop after identifies an arrow signal at an approximate distance of

20cm. It was also necessary some adjusts of Styrofoam plate positioning.

Figure 27. Configuration planned for running the vision-based application on
RoboDeck

When the application began to run, the robot began moving forward (Figure 27-

a). When the one identified the left arrow signal at an approximate distance of 20cm the

robot turned left (Figure 27-b) and followed forward (Figure 27-c), approaching to the

next signal (right arrow). When identified the right arrow signal, the robot turned right

and followed forward (Figure 27-d). Finally, the robot identified the stop signal (Figure

27-e) and stopped. Hence, the robot performed the proposed course with success.

It was performed so more test so that the robot did the course. The results of

these ones can be observed in the Table 2. For quantitative and quality results, the

achievement of success related to route is given in table as "Not Reached", "Partial" or

"Total", where:

• "Not Reached" - The course was not accomplished due to some fail during the

one.

• "Partial" - The course was accomplished, but the robot presented a slight route

detour in some moment (due to some floor characteristics or not use of robot

alignment sensors), fact that did not affected the performing of course.

• "Total" - the course was done normally (successfully).

49

Revista de Sistemas e Computação, Salvador, v. 8, n. 1, p. 23-55, jan./jun. 2018

http://www.revistas.unifacs.br/index.php/rsc

Table 2. Tests results related to performing of course by RoboDeck

As registered in the Table 2, ten attempts were done related to performing by

RoboDeck about the planned course. Both first and second attempts, it occurred slight

route detour during the navigation in some moments (although RoboDeck had done

correctly the course). In the first attempt, for instance, after the RoboDeck identified the

right signal to turn, the one turned right, and began a rectilinear route in towards the stop

signal. Before finish totally the rectilinear route, the robot´s wheels inclined slight

(about three degrees) for right, doing the route did not finish totally in straight.

Relate to the fourth attempt registered in the Table 2, the course did not perform

successfully due to a momentary interruption of wireless signal between RoboDeck and

the microcomputer that it was processing the images (this configuration can be observed

in the Figure 26). This factor contributed for a not recognition of the signal by robot.

Still observing the outlined results in the Table 2, was realized that seven of ten

attempts occurred with "Total" success. In two of ten attempts was obtained "Partial"

success, and in only one of the attempts, the success was "Not Reached". In compliance

of these results, was generated a chart contained in the Figure 28, which once analyzed,

can show a considerable success rate. In the Figure 29 there is the chart related to the

amount of times the recognition of each signal was reached with success and the action

was done by RoboDeck. Is presented also the amount of times the course occurred with

"Total" success. There, is showed that the left signal was recognized more than the right

and stop signals. This difference occurred due the light hitting different angles of the

signals. The success was not obtained all the times due some slight detour during the

course and interruption in the wireless signal (as mentioned before).

50

Revista de Sistemas e Computação, Salvador, v. 8, n. 1, p. 23-55, jan./jun. 2018

http://www.revistas.unifacs.br/index.php/rsc

Figure 28. Percentage related to success of course performing

Figure 29. Hits related to the recognition of each signal and running of the

action, and amount of running with "Total" success

7. Conclusion

Based on experienced obtained during the development of application using the
OpenCV Library, was realized that that one offers really important advantages for the
developing of computer vision applications. Is possible to say that this library has
potential for leverage research in the computer vision field, because besides being a rich
library with too many functions, it one is free and open source.

The RoboDeck hardware was showed satisfactory related to resource available
by this one, showing itself adequate for using OpenCV in development of robotic
applications. Those resources allow performing infinity of researches in mobile robot,
factor that consequently can increase significantly the amount and quality of Brazilian´s
research related to the mentioned subject.

Due the fact of being a relatively new hardware in the market, the RoboDeck still
needs of computer vision applications, fact that motivated the developing of this work.
It hoped this work can be used as a support material for researchers that have interests in
developing computer vision applications for RoboDeck or other robotic hardware,
because the developed applications can be easily adjusted for other hardware that
support the use of OpenCV.

The aim of developing a based-vision navigation application that provides for
the robot a determined degree of autonomy during the navigation in an environment had
been accomplished. Naturally, improvements can be performed in future works so that
the navigation is done with better accuracy and speed. Several applications can be
developed based on algorithms created in this work, for instance, signal recognition
applications for traffic and semaphore for implementing outdoor autonomous vehicles,
autonomous wheelchair, convoy of autonomous vehicles(for helping people in airports,

51

Revista de Sistemas e Computação, Salvador, v. 8, n. 1, p. 23-55, jan./jun. 2018

http://www.revistas.unifacs.br/index.php/rsc

conventions, museums, etc.), surveillance systems based on autonomous robots
(recognition of doors, windows, gates), systems for inspection(from the definition of
object for being inspected, for instance, aerial vehicles doing inspections in plantations,
transmission lines for electricity, phone towers, etc.).

There are several impediments that render the many approaches to autonomous
navigation useless during real time applications. The frequent problem encountered
during real-time navigation is those pertaining to anomalies in the environment that
deviate them from the typical model of the environment. Obstacle in the environment
disrupts the estimates of the robot’s location in case of passive navigation techniques
such as optical flow or feature tracking. On the other hand, wheel odometer-based
navigation systems suffer from wheel-slip situations resulting in location estimates that
are far from the robot’s true location. The wheel slip situation often happens when the
friction in the wheel ground interface in not enough to counter the torque from the
wheels rotation. An erroneous measurement of wheel rotation is recorded via the wheel
encoders resulting in a faulty robot location estimate.

The movement of persons usually is inevitable in the environment that the robot
is present. Errors in the camera system due to digitization process or defects in the
camera construction during manufacturing such as lens distortions and improper
positioning of the image sensor also prove to be problematic during image acquisition
step. These effects trickle down the motion estimation pipeline and eventually corrupt
the localization output. On the other hand, the vision-based navigation systems can fall
prey to unavailability of proper visual cues in the environment. A key feature based on
tracking approach often suffers in environments with uniformly colored surfaces that
often have lack in texture. Presence of good amount of texture is essential in feature-
tracking-based approaches to navigation. Presence of clutter in the navigating
environment such as bushes and other foliage often confuse vision systems in the case
of outdoor environments. Outdoor environments also face the problem of lighting
variation as the robot moves from one place to another. In addition to this the effect of
shadows cannot be ignored as well. Proper localization of the robot within its
environment is one of the major challenges in autonomous navigation.

The RoboDeck API for communication with MAP, designed and developed

(partially) in this work, can provide facilities for other researchers related to the

application development for RoboDeck. As future works, its recommended the

following approaches: Optimization of vision algorithms presented in this work so that

consume less computational resources and it can be run directly on robot with a

satisfactory response time; Adding lighting filters in the vision algorithms; Using of

other image patterns recognition techniques, so that improves the recognition accuracy;

Integration of the vision-based navigation application with reading commands of

ultrasonic sensors and GPS, so that obtains a better accuracy related to robot localization

in an environment; Continuity of RoboDeck´s API development for communication

with MAP; and Development of collaborative applications, involving two or more robot

acting in a jointly way.

52

Revista de Sistemas e Computação, Salvador, v. 8, n. 1, p. 23-55, jan./jun. 2018

http://www.revistas.unifacs.br/index.php/rsc

Acknowledgments

Thanks to CNPq for their program RHAE and DT (Productivity in Technological

Development and Innovative Extension).

References

Adept, MobilerRobots (2011) “Specification Manual Pionner 3 – AT”.

http://www.mobilerobots.com/Libraries/Downloads/Pioneer3AT-P3AT-

RevA.sflb.ashx [21 may 2011].

Andresen, C.; Jones, S. D.; Crowley J. L. (1997) Appearance Based Processes for

Visual Navigation. Symposium on Robotic Systems – SIRS 97, 227-236.

Bradisk, Gary; Kaehler, Adrian (2008). Learning OpenCV – Computer Vision With

OpenCV Library. 1ªed. O´Reilly Media, pp. 2-4.

Brooks, R.A. (1991). New approaches to robotics. In Science, Vol. 253, 1227-1232.

Budiharto, W. (2014) Modern Robotics with OpenCV. Sci Pub. Group.

Chaczko, Zenon; Braun, Robin (2010) Teaching computer vision for telemedicine

systems using OpenCV. In ITHET'10 Proceedings of the 9th international conference

on Information technology based higher education and training.

Chang, Wen-Chung; Chuang, Chun-Yi, (2011) "Vision-based robot navigation and map

building using active laser projection," System Integration (SII), IEEE/SICE

International Symposium, 2011; 24, 29, pp. 20-22.

Chen, XiaoQi; Chen, Y.Q.; Chase, J.G. (2009) Mobile Robots – State of the Art in

Land, Sea, Air, and Collaborative Missions, In-Tech.

Chen, Haoyao; Sun, Dong; Yang, Jie; Chen, Jian, (2010) "Localization for Multirobot

Formations in Indoor Environment," Mechatronics, IEEE/ASME Transactions, pp.

561-574.

Ching, Yong Kok; Prabuwono, Anton Satria; Sulaiman, Riza. (2009) Visitor Face

Tracking System Using OpenCV Library. In Proceedings of IEEE Student

Conference on Research and Development.

Choset, H. M., (2005) Principles of robot motion: theory, algorithms, and

implementation. MIT press.

Culjak, I. et al. (2012). A brief introduction to OpenCV. In: MIPRO, 2012 Proceedings

of the 35th Intern. Convention. IEEE, pp. 1725-1730.

Desouza, Guilherme N.; Kak, Avinash C. (2002) Vision for Mobile Robot Navigation:

A Survey. IEEE Trans. Pattern Anal. Mach. Intell. pp. 237-267.

Dawson-howe, K. (2014). A practical introduction to computer vision with OpenCV.

John Wiley & Sons.

Fernández-caramés, C. et al. (2014) A real-time door detection system for domestic

robotic navigation. Journal of Intelligent & Robotic Systems, v. 76, n. 1, pp. 119-136.

53

Revista de Sistemas e Computação, Salvador, v. 8, n. 1, p. 23-55, jan./jun. 2018

http://www.revistas.unifacs.br/index.php/rsc

Guzel, M.S. (2009). Mobile robot navigation using a vision based approach. In

proceedings Newcastle University Postgraduate Conference.

IROBOT. iRobot (2011) Create Owner’s guide. http://www.irobot.com/

filelibrary/pdfs/hrd/create/Create Manual_Final.pdf [23 may 2011].

Jahne, Bernd; Hausseker Horst (2000) Computer Vision and Applications: A Guide for

Students and Practitioners. Acad. Press.

Johns, E.; Guang-zhong, Y. (2010) "Scene association for mobile robot navigation,"

Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference,

4698,4703, 18-22.

Jones, S.D.; Andresen, C.; Crowley, J. L. (1997) Appearance Based Processes for

Visual Navigation. In Proc.of IEEE Int’l Conf. on Intelligent Robots and Systems

(IROS), pp. 551–557.

Kundur, S.; Raviv, D. A. (1998) Vision-Based Pragmatic Strategy for Autonomous

Navigation. Pattern Recognition, Elsevier Science, Vol. 31, N. 9, pp. 1221-1239.

Hongming, Z. et al. (2005) Object detection using spatial histogram features, Image and

Vision Computing 24, pp. 327-341.

LEGO (2012) Lego Mindstorms User Guide. http://cache.lego.com/

upload/contentTemplating/Mindstorms2BuildingInstructions/otherfiles/downloadA0

B7A698E231D3E619C43ECCFFE2F27F.pdf [may 2012].

Liang, S. N. et al. (2016) Open source hardware and software platform for robotics and

artificial intelligence applications. In: IOP Conference Series: Materials Science and

Eng. IOP Publishing, pp. 012142.

Linder, T.; Arras, K. O. (2016) People Detection, Tracking and Visualization Using

ROS on a Mobile Service Robot. In: Robot Operating System (ROS). Springer

Publishing, pp. 187-213.

Lopes, B. S.; et al. (2010) Fath, Vinicius.; Silva, Marcelo Q.; Assis, Wanderson, O.;

Coelho, Alessandra D.; Gomes, Marcelo M., A Robotic Classifier System Including

Computer Vision. LARC - Latin American Robotics competition, FEI, Brazil.

Matsumoto, S.; Ito, Y. (1995) Real-time Based Tracking of Submarine Cables for

AUV/ROV. In Proc. of IEEE Oceans, pp. 1997–2002.

Mcginn, C. et al. (2015) Towards an embodied system-level architecture for mobile

robots. In: Advanced Robotics (ICAR), 2015 International Conference on. IEEE, pp.

536-542.

Mishra, P. et al. (2013) "Robust template matching based obstacle tracking for

autonomous rovers," Electronics, Computing and Communication Technologies

(CONECCT), 2013 IEEE International Conference, pp. 1-5, 17-19.

Moravec, H. (1980) Obstacle Avoidance and Navigation in the Real World by a seeing

robot Rover, PhD thesis, Stanford University.

Muñoz, S M. (2011) Projeto do software do RoboDeck. Versão 1.0. São Carlos.

54

Revista de Sistemas e Computação, Salvador, v. 8, n. 1, p. 23-55, jan./jun. 2018

http://www.revistas.unifacs.br/index.php/rsc

Nehmzow, Ulrich (2003) Mobile robotics - A practical introduction. 2nd edition,

Springer.

Ohno, T.; Ohya, A.; Yuta, S. (1996) Autonomous Navigation for Mobile Robots

Referring Pre-Recorded Image Sequence. In Proc. of IEEE Int´l Conf. on Intelligent

Robots and Systems (IROS), pp. 672–679.

Orlandini, G. (2012) Desenvolvimento de aplicativos baseados em técnicas de visão

computacional para robô móvel autônomo, Mestrado, Universidade Metodista de

Piracicaba, p. 95.

Quigley, M. et al. (2009) ROS: an open-source Robot Operating System. In: ICRA

workshop on open source software, pp. 5.

Rivera-bautista, J. A. et al. (2012) Using color histograms and range data to track

trajectories of moving people from a mobile robot platform. In: Electrical

Communications and Computers (CONIELECOMP), 22nd International Conference

IEEE, pp. 288-293.

Russ, J. C. (2011) The Image Processing Handbook. Sixth Edition. CRC Press.

Russel, S.; Norvig, P. (1995) Artificial Intelligence: a modern approach. Prentice-Hall,

New Jersey.

Saunders, C. et al. (2015) Computer Vision Techniques for Autonomic Collaboration

between Mobile Robots.

Siegwart, R.; Nourbakhsh, R. Illah (2004) Introduction to Autonomous Mobile Robots,

The Mit Press.

Shapiro, L.; Stockman, G. (2001) Comp. Vision. 1ªed. Prent Hall.

Shrivastava, R. (2013) A hidden Markov model based dynamic hand gesture recognition

system using OpenCV. In: Advance Computing Conference (IACC), 2013 IEEE 3rd

Inter. IEEE, pp. 947-950.

Suarez, O. D. et al. (2014) OpenCV Essentials. Packt Publishing Ltd.

Szabo, R.; Gontean, A. (2015) Robotic arm detection in space with image recognition

made in Linux with the Hough circles method. In: Computer Science and Information

Systems (FedCSIS), Federated Conference on. IEEE, pp. 895-900.

Thrun, S.; Bucken, A. (1996) Integrating grid-based and topological maps for mobile

robot navigation. In Proceedings of the Thirteenth National Conference on Artificial

Intelligence, Portland, pp. 1-7.

Tomatis, N.; et al. (2001) A Hybrid Approach for Robust and Precise Mobile Robot

Navigation with Compact Environment Modeling. In Proceedings of IEEE,

International Conference on robotics & Automation, Seoul, Korea.

Ukida, H.; et al. (2012) "Object tracking system by adaptive pan-tilt-zoom cameras and

arm robot," SICE Annual Conference (SICE), 2012 Proceedings, pp. 1920 -1925.

Valasek, J. et al. (2005) Vision-Based Sensor and Navigation System for Autonomous

Air refueling. Journal Guidance, Control and Dynamics.

55

Revista de Sistemas e Computação, Salvador, v. 8, n. 1, p. 23-55, jan./jun. 2018

http://www.revistas.unifacs.br/index.php/rsc

[48] XBOT Company. Manual do usuário RoboDeck. Versão 1.0. São Carlos, 2011.

www.xbot.com.br [10 dec. 2015].

Xie, G.; Lu, W. (2013) Image Edge Detection Based On OpenCV. International Journal

of Electronics and Electrical Eng., v. 1, n. 2, pp. 104-6.

Yang, Y. et al. (2010) Realization for Chinese vehicle license plate recognition based on

computer vision and fuzzy neural network", Proc. SPIE 7749, 2010 International

Conference on Display and Photonics.

Yeoun-Jae, K. et al. (2011) "Vision-based direction determination of a mobile robot in

indoor environment," Digital Ecosystems and Technologies Conference (DEST),

Proceedings of the 5th IEEE International Conference, pp. 153-157.

Zhao, G., Jia, T. (2009) "Construction of vision-based manipulation system for 3D

industrial objects, "IEEE International Conference on Robotics and Biomimetics,

2009; 1051-1056.

