
Revista de Sistemas e Computação, Salvador, v. 8, n. 2, p. 245-261, jul./dez. 2018
http://www.revistas.unifacs.br/index.php/rsc

A Domain Specific Language for the Domain of Student

Evaluation

Anderson Cunha Santana do Vale, Sérgio Martins Fernandes, Ana Patrícia Magalhães

Universidade Salvador – Brasil

 andersoncunh@gmail.com, sergio.fernandes@unifacs.br, anapatriciamagalhaes@gmail.com

Abstract. Software development has become increasingly complex over the

years. It might run on different platforms, integrate with other software and

accept constant changes in requirements. Academic systems, although less

complex than other categories of software, such as embedded systems, for

example, need to integrate different subsystems, such as student enrollment

and class planning and may change almost every semester. To deal with such

complexity, different development approaches might be used, for example,

Model-Driven Development (MDD). MDD is an approach that focuses on

modeling an application and then (semi) automatically generating code to

improve productivity and quality. This paper presents DSCHOLAR, a Domain

Specific Language (DSL) to support the development of models of student

evaluation processes at several universities. This DSL is part of a solution for

the development of academic applications using the MDD approach. Our DSL

can model different student evaluation scenarios to then (semi) automatically

generate application code. This language was validated in a case study

performed at four different universities and was efficient in modeling their

student evaluation processes.

1. Introduction

Model-driven development (MDD) is an approach for software development based on
higher abstraction level models and (semi) automatic translation of these into lower
level models and, frequently, into textual programming language code [Brambilla, et al.,
2012] [Chen, et al., 2005]. Among other possible benefits, MDD aims to improve
software development processes by increasing process productivity and product quality
and facilitating multiplatform software development.

 MDD is gaining acceptance in many domains (e.g. automotive, aerospace,
railways and others.), but it is still evolving, and further research is needed – and is
being performed – to improve its effectiveness and reach. An important research area in
MDD concerns model creation. Here we present an MDD case study for the educational
domain, an area where it is not widely used.

 In MDD models must be expressed in modeling languages with a well-defined
syntax and semantics, i.e. in General Purpose Languages (GPL), e.g. Unified Modeling
Language (UML), or using Domain Specific Languages (DSL) [Chen, et al., 2005]
[Schmidt, 2006]. A DSL is a modeling language or executable specification language
that has the power of expression normally restricted to a particular domain of interest
through notations and appropriate abstractions [Deursen, et al., 2006].

246

Revista de Sistemas e Computação, Salvador, v. 8, n. 2, p. 245-261, jul./dez. 2018
http://www.revistas.unifacs.br/index.php/rsc

 There are other software development approaches, such as Software Product
Lines (SPL) [Clements, et al., 2001], that use strategies and techniques concerning
productivity and quality as well as MDD. SPL is a development approach that typically
focuses on the development of product families. Such products share common
characteristics related to a given domain and have points of variability, which must be
customized to attend a specific customer needs.

 MDD can be integrated to SPL to improve the development of those specific
points of variability. If so, models are designed – typically using DSLs – for each
variability point, and (semi) automatically transformed into code.

 The context for this paper is a software product family in the educational
domain, named Student Information System (SIS). It manages all academic aspects of
the lifecycle of students at the university, such as six-monthly enrollment, class planning
and registration, course evaluations, among others. In SIS product family, each product
of the family is customized to be used in a specific university or some specific area of a
university. This paper focuses specifically on the student evaluation process, which is an
important point of variation in the SIS product family.

 Different universities (or departments in a university) have very different
evaluation processes, which can also evolve significantly over time. The use of a
traditional software development process in these situations would be highly inefficient,
because for each specific process a non-trivial software code, manually written, would
be necessary. Every time the process changes, the corresponding code would need to be
updated. This is a typical case where an MDD solution applies. Therefore, we propose a
solution that comprises: (i) a DSL, named DSCHOLAR, which is able to graphically
represent each specific evaluation process of a university or department; (ii) a
transformation program, to generate the high-level textual code based on the models
created with de DSL; and (iii) a tool, to support modeling tasks using our DSL as well
as the transformation execution for the code generation.

 The integration of MDD and SPL as well as the use of DSL to assist this
integration is not novel, especially for embedded systems or for the controls domain. On
the other hand, this solution is seldom used in enterprise information systems due to
aspects such as every-change requirements, weak architecture constraints, variable
platforms and others [Ishida, 2007]. Particularly, this paper presents a DSL to support
the modeling of students’ evaluation processes. For the best of our knowledge, a DSL
for this domain has never been proposed before in literature.

 This paper describes DSCHOLAR DSL and presents some graphical models
developed using DSCHOLAR. These models describe the evaluation process at two
different universities. Moreover, we show the results of the DSL evaluation through a
case study.

 The rest of this paper is organized as follows. First, Section 2 introduces the
development approaches related to our solution; provides an overview of our SIS
product family; the student evaluation domain; and briefly describes the software tool
used to support the work. Section 3 presents related works. Section 4 and 5 describe the
Student Information System (SIS), the DSL DSCHOLAR proposed in this paper and
how it was validated. Finally, Section 6 presents our conclusions and future work.

247

Revista de Sistemas e Computação, Salvador, v. 8, n. 2, p. 245-261, jul./dez. 2018
http://www.revistas.unifacs.br/index.php/rsc

2. Background

Model Driven Development (MDD) [Brambilla, et al., 2012] is an approach that makes
intensive use of models to represent systems at different levels of abstraction (e.g.
specification, design and code). These models are used to (semi) automatically generate
other models and application code in different languages.

 The main concepts of the MDD approach are abstraction and automation.
Models are abstract representations of the structure and behavior of systems [OMG,
2014] and automation is achieved using several model management operations – in
essence, model-to-model and model-to-code transformations [Brambilla, et al., 2012].

 The MDD approach uses two main elements: models, abstract representations of
the structure and behavior of systems [OMG, 2014]; and transformations, programs that
are responsible for model conversion into code Brambilla, et al., 2012].

 Models in MDD are not mere documentation; they are the first artifacts in code
generation. Therefore, they must be formally expressed in a modeling language with a
well-defined syntax and semantics. In the MDD context, Domain Specific Languages
(DSLs) are usually adopted – instead of UML models – because they better encapsulate
the concepts of the domain, enabling the construction of more expressive models.

 The definition of a DSL involves (i) an abstract syntax, which defines the
constructors of the language; (ii) a static semantics, with the well-formed rules and
constraints of the language; (iii) and concrete syntax, with the concrete notation for the
language constructors.

 The abstract syntax and static semantics of a language in MDD context are
usually defined using metamodels [Stahl, et al., 2010]. Therefore, models must be in
conformance with metamodels. Analogously, metamodels are defined according to a
metalanguage, represented in meta-metamodels [OMG, 2017].

 The concrete syntax of a language specifies how to represent its constructors
during modeling and can be expressed in many ways, for example in graphical and
textual notation [Stahl, et al., 2010].

Figure 1 - Example of application development using MDD

 Initially, Model 1 is specified, which could be for example a requirements
model. Then it is converted, through a transformation, e.g. T1, into another model, e.g. a

248

Revista de Sistemas e Computação, Salvador, v. 8, n. 2, p. 245-261, jul./dez. 2018
http://www.revistas.unifacs.br/index.php/rsc

design model, and so on until an application code is generated. The number of models
(e.g. abstraction levels) may vary in each scenario. Each model is specified according to
a metamodel, which represents the domain-specific modeling language used. At a
certain point in the development, a platform independent model (e.g. Model 2 in Figure
1) can be used as input to generate models on specific platforms. (e.g. Model n in Figure
1) and/or in code in different programming languages.

 MDD may be integrated with several other development approaches to (semi)
automate the development process improving productivity.

 Greenfield, et al. (2004) and Czarecki, et al. (2000) among others, propose to
integrate MDD with Software Product Lines (SPL), which is an approach used to
develop a software family – a range of software products with a high degree of
similarity [SEI, 2012].

 In SPL a set of domain artifacts can be reused for the composition of different
applications in the same domain. They are common artifacts that might be customized
according to applications specific needs.

 SPL uses domain knowledge to identify common parts within a family of related
products. These common parts form the basis of a product platform and are used in all
products of a product family. Differences between products of a family are represented
as variability points – unique parts of each product – which are individually developed
[Istoan, 2014].

 Greenfield, et al. (2004) integrates MDD and SPL and proposes the use of MDD
to develop the variability points of each product in a SPL, instead of the whole product
family.

 It also advocates the use DSLs – instead of pure UML – to model each
variability point, since UML would yield a lower fidelity description. Furthermore,
multiple DSLs may be needed focusing on different aspects of the product family.

2.1 Evaluation Process Domain

A Student Information System (SIS) “consists of several basic functional modules to
support features such as system setup (e.g. managing users, roles, countries, buildings,
rooms, faculties, and departments), academic setup (e.g. managing courses, course
sections, and study plans), admissions, student record management (e.g. managing
personal information, scholarships, schedules, grades, transcripts, major transfers, etc.),
registration (i.e. adding and dropping courses), final exam scheduling, grade processing
(i.e. entering grades, computing Grade Point Averages (GPA), and viewing transcripts),
graduation, and reporting.” [Al-Hawari, et al., 2017].

 Each university has its specific evaluation process and differences can be
significant. To illustrate this, two real evaluation processes are briefly described below.

 At a public university, for example, there is a minimum number of evaluations
each class must do, but there is no fixed number of evaluations, nor a maximum
number. Therefore, a teacher is free to define the number of evaluations (over the
minimum) and free to define the weight given to each evaluation.

249

Revista de Sistemas e Computação, Salvador, v. 8, n. 2, p. 245-261, jul./dez. 2018
http://www.revistas.unifacs.br/index.php/rsc

 At another university, a private one, the number of evaluations and the weight of
each one is predefined: there are three evaluations for each class, and their weights are
3, 4 and 3 respectively. However, only students that do not reach GPA 7 (on a scale of 0
to 10) in the two first evaluations go on to do the third one. Furthermore, Evaluation 2 is
a composition of sub-evaluations.

 Based on the evaluation processes described above (and others omitted for
brevity), the evaluation process module of the SIS was defined as a point of variation of
the product family. An analysis of the specific variations in this model made it a
candidate for an MDD development process based on a DSL. Therefore, we defined the
DSCHOLAR DSL for this domain as well as the necessary transformations to generate
components code. The DSL, which is the main goal of this paper, is detailed in section
4.

2.2. Software tool to support the MDD / DSL solution

There are many tools suited to support the development of MDD solutions, some based
on UML, others on DSLs; some open source, other proprietary.

 The team working on this project had previous experience with some of these
tools, such as Generic Modeling Environment (GME) [Molnár, et al., 2007], an open
source DSL based modeling tool that is integrated with a transformation definition
environment; Eclipse Modeling Tools, plugins for the Integrated Development
Environment (IDE) Eclipse that supports the whole MDD process, based on DSLs
[Eclipse Foundation]; MetaEdit+ a proprietary DSL based tool from a company named
MetaCase, which also supports a complete MDD process based on DSLs [Tolvanen,
2016], among others.

 The MDD / DSL software tool selected for this project was Microsoft DSL
Tools, a set of plugins hosted by Microsoft Visual Studio, that comprise four tools
[Microsoft Corporation, 2016]:

• A project wizard to help initiate the creation of the DSL. This wizard provides
DSL templates (such as a well-formed subset of UML class diagrams;
workflows, component models, among others).

• A graphical environment for DSL creation and editing.

• A validation engine that analyzes the DSL syntax and guarantees that it is well-
formed.

• A transformation generator – called code generator – that translates DSL models
into high-level programming language code.

 Microsoft DSL Tools has strengths and some weaknesses. Among the strengths,
its meta-metamodel can be based not only on a subset of UML class diagrams but, as
mentioned above, the tool wizard allows for other kinds of meta-metamodels structures.
It is also a relatively stable tool, with a friendly user interface, and it is integrated to MS
Visual Studio – in the present case, an advantage because Visual Studio is the tool used
by the software house involved in this project.

 Among MS DSL Tools weaknesses, the main one is that the transformation tool
is, in fact, a code generator tool, which means that it does not allow model to model

250

Revista de Sistemas e Computação, Salvador, v. 8, n. 2, p. 245-261, jul./dez. 2018
http://www.revistas.unifacs.br/index.php/rsc

transformation. It is also part of a proprietary tool – Microsoft Visual Studio – and its
use implies some cost.

 DSL Tools was selected for this project essentially because the academic team
involved in the project had previous expertise in using it, while the software industry
team already uses MS Visual Studio as standard IDE. Beyond that, it provides for easy
integration between code generated by the transformations and code manually written in
Microsoft Visual Studio – although this, in particular, will only be useful on the second
phase of the project, not for DSL development.

 The main tool weaknesses were not relevant for this project since the project
does not intend to do model-to-model transformations and the organizations involved
(research team and software house) supplied product licenses available to all involved.

3. Related Work

The development of new products in a software product line has been aided by the use
of MDD in variation points modeling and code generation for quite some time [Durelli,
et al., 2012].

 Embedded systems are one of the domains which frequently adopt MDD and
SPL in development. According to Bunse (2007), the use of MDD in embedded system
development promotes higher than normal reuse. Therefore, many authors use this
strategy. [Polzer, et al., 2009], for example, integrates SPL techniques and MDD to
develop control systems, where product lines practices are used to define variabilities in
the behavior of microcontrollers and MDD to improve the development of these
variabilities. In the same direction, [Braga, et al., 2011] proposes the ProLiCES, an
approach for the development of safety-critical embedded applications using a product
line for unmanned aerial vehicles and MDD for modeling and code generation.

 To assist the integration between SPL and MDD, Domain Specific Languages
are usually adopted [Tokumoto, 2010]. Ivanova [Ivanova, et al., 2014], for example,
proposes a DSL to develop portable embedded systems which allows rapid modeling
and generation of code in different platforms, and [Durelli, et al., 2012] proposes a DSL
to develop a SPL applied to mobile robot applications.

 Another domain where MDD and SPL are commonly used is game design,
typically using DSLs, as was presented in a survey of state of art in game development
[Tang, et al., 2011]. This survey focuses on to identify strategies used in game
development, including MDD, as well as on identifying modeling languages specific for
this domain, e.g. DSLs that adapt state chart diagrams, use case diagrams and class
diagrams to generate models in the game domain. Furthermore, the work presented by
Zhu (2014) proposes the framework Engine Cooperative Game Modeling (ECGM) to
model games and generate code and data based on DSLs and shown that it can
significantly improve the productive.

 In summary, the integration of MDD and SPL as well as the use of DSL to assist
this integration is not novel, especially for embedded systems or for the controls
domain. On the other hand, this solution is seldom used in enterprise information
systems due to aspects such as every-change requirements, weak architecture
constraints, variable platforms and others [Ishida, 2007]. Our work differs from the

251

Revista de Sistemas e Computação, Salvador, v. 8, n. 2, p. 245-261, jul./dez. 2018
http://www.revistas.unifacs.br/index.php/rsc

aforementioned ones since it applies SPL and MDD approaches to develop enterprise
information systems in the academic domain. Particularly, this paper presents a DSL to
support the modeling of students’ evaluation processes. To the best of our knowledge, a
DSL for this domain has never been proposed before in literature.

4. SIS product family

This section presents an overview of our SPL for the development of the Student
Information System (SIS) product family. The MDD solution to develop the
components of the product family related to student evaluation process in universities is
also presented (Figure 2).

 On the left of Figure 2, there is a sketch of the SIS product family high-level
design. Some of the components are classified as non-variable while others are
classified as variable. This classification was generated through an analysis of the
features [Czarnecki, et al., 2000] in the product family. Features with no variation in all
members of the product family are deemed non-variable, while those requiring
customization for each product are deemed variable. New products are generated
reusing and/or customizing components of the line.

 The customization of variable components is made using an MDD approach.
This is the case of the component Evaluation Process.

 The right side of Figure 2 details the MDD solution to improve the development
of different Evaluation Process components, according to the specific needs of the
universities. Using the modeling language that we defined for this domain (named
DSCHOLAR in Figure 2) models are designed (e.g. M1, M2 and M3) representing each
component variability, i.e. different student evaluation processes. These models are
processed through transformations automatically generating new components code.
Therefore, if a change occurs in the evaluation process of a university, a new model will
be designed, and its respective component is automatically generated enabling the
development of a new product in the line.

Figure 2 - Overview of SIS product line

4.1 DSCHOLAR DSL

This section presents the DSL defined to support the development components for
evaluation processes using the MDD approach.

252

Revista de Sistemas e Computação, Salvador, v. 8, n. 2, p. 245-261, jul./dez. 2018
http://www.revistas.unifacs.br/index.php/rsc

 DSCHOLAR is a domain-specific modeling language defined as part of our
MDD solution to represent the domain of student evaluation processes used in our SIS
product line. To assist in the definition of the DSCHOLAR metamodel, we used the
process proposed by [Magalhães, et al., 2015]. Moreover, to implement both the abstract
and concrete syntax of the DSL, we used Microsoft DSL Tools [Microsoft Corporation,
2016].

 Figure 3 shows the abstract syntax and Figure 4 shows concrete syntax of
DSCHOLAR. Microsoft DSL Tools represents these two parts of the language in a
single diagram. Here we split the diagram in two figures for clarity. For each element of
the abstract syntax, there is a specific relationship with the element that represents its
concrete syntax. Additionally, the concrete syntax elements have attributes that define
how they should be graphically represented, an image file, for instance.

 The meta-language of Microsoft DSL Tools used to represent DSLs abstract
syntax, is based on a subset of the UML class diagram. The main concepts of the DSL
abstract syntax (such as Entity and Evaluation) are represented as classes, and the
relationships between these concepts are represented by associations, compositions,
aggregations and inheritance, as defined by UML. One visual difference between the
meta-language used here and a UML class diagram is the graphical representation of the
association between concepts of the abstract syntax. While in a UML class diagram an
association is represented by an edge between two classes, in the meta-language of
Microsoft DSL Tools it is represented by a specific type of class, which itself is
connected to the two elements that are being associated (see the association Entity and
Evaluation, in the abstract syntax).

 According to the abstract syntax of our DSL (Figure 3), a DSCHOLAR model
that represents a specific evaluation process comprises one Entity and many
Evaluations.

253

Revista de Sistemas e Computação, Salvador, v. 8, n. 2, p. 245-261, jul./dez. 2018
http://www.revistas.unifacs.br/index.php/rsc

Figure 3 - Abstract Syntax of DSCHOLAR

 An Entity represents the area to which the same evaluation process applies, such
as a university or department of a university. An Evaluation represents the specification
of an evaluation that is applied by the Entity, in each academic period, typically a
semester. Each Evaluation has four attributes: name, weight (the relative weight of one
evaluation relative to the others), description and sequence (the moment at which each
evaluation should be applied, relative to the others). The relationship between an Entity
and their corresponding Evaluation is defined through the association
EntityReferencesEvaluation.

254

Revista de Sistemas e Computação, Salvador, v. 8, n. 2, p. 245-261, jul./dez. 2018
http://www.revistas.unifacs.br/index.php/rsc

 Figure 5 shows an example of a model defined for a private university. As can
be seen, there is one Entity, named Private Institution and three Evaluations, named
Evaluation1, Evaluation2 and Evaluation3. In this example, all the courses at the
Private Institution adopt the same evaluation process.

 Evaluation is a general concept, specialized by four other concepts: Mandatory

Evaluation, which must applied; Optional Evaluation, which is part of the evaluation
process but that may be applied at teachers discretion; Various Evaluations, when
teachers may freely define a number of evaluations not predefined by the evaluation
process; and Extra Evaluation, which is a special evaluation whose grade is to be added
to that of another evaluation grade.

Figure 4 - Concrete Syntax of DSCHOLAR

255

Revista de Sistemas e Computação, Salvador, v. 8, n. 2, p. 245-261, jul./dez. 2018
http://www.revistas.unifacs.br/index.php/rsc

 In the model depicted in Figure 5, there are three evaluations, namely Evaluation

1, Evaluation 2 and Evaluation 3, and their respective relative weight (30, 40, 30). The
round-cornered rectangle of the first two evaluations is the concrete syntax used to
specify that all of them are mandatory specifications. The third evaluation is an optional
evaluation, which is depicted by a conventional rectangle in a different color. Regarding
the number of Optional Evaluations in a model, there are two different modeling
options. If the quantity of Optional Evaluation is already defined for an Entity, each one
of these Evaluations are represented by an instance of an Evaluation modeling element
in the respective model. Otherwise, each teacher can define the number of optional
Evaluation Specifications so that the model will have only one instance of
VariousEvaluations and an attribute quantity is used to define the upper bound of this
quantity. An example of this can be seen in Section 5.2.

 In the abstract syntax, there is a composition relationship between an Evaluation

and itself. This means that the grade of a student may be a composition of grades of sub-
evaluations, each with its weight. An example is shown in Figure 5 where the grade of
Evaluation 2 is a composition of Test Evaluation, Arthe Evaluation and AIC Evaluation,
each with its respective weight. The Arthe Evaluation is an extra one (with a different
color and small icon), which means that this grade will be added to the grade calculated
by the weighted mean of the other sub-evaluations of Evaluation 2. For example: if the
weighted mean of Test Evaluation and AIC Evaluation is 8 for a student, and the grade
of Arthe Evaluation is 1 for the same student, her final grade in Evaluation 2 will be 9.

Figure 5 - Evaluation Process Model for a private University

5. DSL Evaluation

To evaluate the proposed DSL we defined and conducted a case study. It consisted of
the specification of different evaluation processes at several universities in Brazil. To
assist validation, we followed the metamodel design method proposed by [Magalhães, et
al., 2015] and the guidelines for software engineering experimentation presented in

256

Revista de Sistemas e Computação, Salvador, v. 8, n. 2, p. 245-261, jul./dez. 2018
http://www.revistas.unifacs.br/index.php/rsc

[Wohlin, et al., 2014]. We also used GQM [Solingen, et al., 2002] to summarize our
goals (Figure 6).

 The questions underlying the validation are: Q1. Do the language constructors
sufficiently specify all the necessities of a university evaluation processes? Q2. Is it
necessary to add new constructors in the DSL to enable the specification of different
evaluation processes scenarios?

 We aimed to evaluate the expressiveness of our DSL in modeling evaluation
processes used at different universities. The largest four universities in Salvador
regarding student quantity were selected. We detail here the evaluation performed at two
of these: a private institution, which offers more than 40 courses to at least 11000
students; and a public institution with more than 300 courses and over 25000 students.

Analyze the expressiveness of the DSL for student evaluation process domain

For the purpose of specifying evaluation processes in different scenarios (different
universities)

With respect to metamodel coverage

From the perspective of a university teacher staff

In the context of graduate courses

Figure 6 - Evaluation Goal

 Data collection was done using two different methods: direct method, through
the application of a questionnaire during the execution of the study; and independent
method, through the analysis of the documentation produced by the participants, i.e. a
model, written in our DSL, which represents the university evaluation process. A
member of the teaching staff at each university was selected to participate in the study.

5.1 Study Preparation and Data Collection

The study was performed separately for each university. The staff member was asked to
develop the model of the academic evaluation process used at their university using our
DSL. To do this, they used the formal university documentation describing the academic
evaluation process and their own experience as a member of the teaching staff at the
university. All the participants had been teaching for more than five years at the
university. Therefore, a good comprehension of the academic evaluation process was
expected.

 The metric used to evaluate the study was DSL coverage, which was measured
considering two indicators: #UC (used constructors). It measures the number of DSL
constructors used in a model, collected from the model produced by the teaching staff;
and #MC (missing concepts), which measures the number of concepts present in the
university academic evaluation process that could not be modeled by our DSL, collected
in the questionnaire answered by participants. #UC is important to identify how many
constructers as well as which of them have been validated through the study. #MC is
important to improve the DSL. The goal is that after some validations, the #MC

257

Revista de Sistemas e Computação, Salvador, v. 8, n. 2, p. 245-261, jul./dez. 2018
http://www.revistas.unifacs.br/index.php/rsc

becomes zero, indicating that the metamodel covers the definition of many kinds of
evaluation processes.

5.2 Study Execution

According to [Magalhães, et al., 2015] metamodel validation can be done iteratively,
instantiating different models, until developers observe that the number of necessary
modifications in the metamodel decreases considerably. Following this, we performed
the validation between October and December 2017 iteratively instantiating a model for
each selected university, collecting data and using the results to improve the metamodel
before validating another university.

 In each validation, we first trained the participants in DSL usage (e.g. explained
the metamodel constructors and showed them how to use the modeling environment)
and then asked participants to develop the model of the evaluation process used at their
university. They developed the model alone using a computer in our research laboratory.
The models produced for the public university and the private university can be seen in
Figure 7 and Figure 5, respectively. The description of how the evaluation process is
used at these universities work is briefly described in Section 4.1.

 Figure 7 shows the resulting model for the public university, named Public

Institution. At this university, there are three mandatory evaluations, e.g. Evaluation1,
Evaluation2, Evaluation3, one Various Evaluation and the Final Evaluation. The
weight of each evaluation is expressed as an attribute of the box. If there is a fixed
weight, it must be defined (e.g. Final evaluation, with weight=30). Otherwise, the
weight is represented as “0” indicating that the teaching staff will be responsible for this
definition (e.g. Evaluation1, with weight=0).

 As a result of this validation, we identified the need to include this concept of
various evaluation (using our metric #MC=1). This was included in our DSL and the
model was recreated before proceeding to the next university.

 The model produced for the private university can be seen in Figure 5. In this
validation, we identified the need to represent an evaluation as a composition of other
evaluations, e.g. Evaluation2 is a composition of Test Evaluation, the Arthe Evaluation
and AIC Evaluation (again #MC=1). The metamodel was therefore modified again to
add this concept and then we proceeded to another validation.

Figure 7 - Model of the evaluation process at a public higher education institution

258

Revista de Sistemas e Computação, Salvador, v. 8, n. 2, p. 245-261, jul./dez. 2018
http://www.revistas.unifacs.br/index.php/rsc

5.3 Study Data Analysis

As we iteratively validated and modified the DSL during this study, at the end of the
fourth validation, we observed that all the concepts defined in our DSL were used in the
models produced, i.e. #UC=100%. Therefore, we can say that it covers the necessary
constructors to instantiate the models (related to Q1). Moreover, the missing concepts
identified during the process were included and are now part of the language (related to
Q2).

 We know that the study results are limited and do not provide statistical
evidence to support general conclusions. However, we believe that it can be considered
an initial step in planning future case studies. The validation reached its goal, i.e. the
DSL has enough expressiveness to specify evaluation processes at different universities.

 The DSCHOLAR evaluation already performed does not imply that the DSL
will not need to evolve, to achieve a broader audience, where the evaluation process
may significantly differ from what we found until now.

 If so, to minimize the costs involved, we are designing a component-based, low
coupling software solution, so that ideally no collateral effects will appear if a student
evaluation process changes, meaning that the DSL generated code will have to be
updated, and even if the DSL itself needs to be updated.

7. Conclusions

This paper presented the DSL DSCHOLAR as part of the Student Information System
(SIS) product line. DSCHOLAR enables the use of the MDD approach to developing
variable components for the student evaluation process domain.

 Using DSCHOLAR, models can be graphically developed to express the
variability in evaluation processes at different universities. These models can be used as
the main artifacts to automatically generate code improving flexibility and productivity
in software development. Therefore, implementation of changes in evaluation process
can be modeled directly by the academic stuff, the domain specialist.

 The student evaluation process was the variation point selected for our study for
economic reasons, because the costs involved in “manually” changing this particular
functionality on software products deployed before the MDD solution creation
frequently made clients opt for not evolving their implementations when their process
changed, which is not rare.

 When that happened, the evaluation processes supported by the tools differed
from the academic process in place, generating significant extra work for teachers and
others involved.

 So, by automating the evaluation process modeling and implementation, we are
not only increasing productivity and reducing the cost of software development but also
reducing the effort performed by those (typically, teachers) who use the solution.

 However, quantitative measurements of quality and efficiency improvements of
our solution will only be viable after the second phase of the project– the development
of transformations and integration between automated and manually generated code – is
concluded.

259

Revista de Sistemas e Computação, Salvador, v. 8, n. 2, p. 245-261, jul./dez. 2018
http://www.revistas.unifacs.br/index.php/rsc

 From the research point of view, we believe that the real contribution of our
work is the use of MDD integrated with SPL for the educational domain – a domain for
which MDD is not widely applied. Besides, this is an academic project integrated with
an industrial one. The solution developed here will be incorporated into the SIS
development process of a software house.

 The project also aims to demonstrate the practicality and efficiency of using not
one large DSL for the whole domain, but instead of many small ones for each specific
variation point of the software family.

 DSCHOLAR was evaluated in a case study and shown to be expressive in
modeling different university scenarios. We are currently planning a controlled
experiment to generate code from the models produced in the case study and integrate it
with manually generated components. The next step involves a case study to validate the
MDD solution as a whole for this specific variation point of the SPL.

References

Al-Hawari, F. Alufeishat, A. Alshawabkeh, M. Barham, H. and Habahbeh, M. (2017)
"The Software Engineering of a Three-Tier Web-Based Student Information System
(MyGJU)," Computer Applications in Engineering Education, vol. 25, no. 2, pp. 242-
263.

Braga, R. V. Castelo Branco, K. R. Trindade Junior, O. Masiero, P. C. Neris, L. O. and
Becker, M. (2011) "The ProLiCES Approach to Develop Product Lines for Safety-
Critical Embedded Systems and its Application to the Unmanned Aerial Vehicles
Domain," in CLEI, Quito.

Brambilla, M. Cabot, J. and Wimmer, M. (2012) “Model-Driven Software Engineering
in Practice”, Morgan & Claypool.

Bunse, C. Gross, H. G. and Peper, C. (2007) "Applying a Model-Based Approach for
Embedded System Development," Delft University of Technology, Delft.

Chen, K. Sztipanovits J. and Neema, S. (2005) "Toward a Semantics Anchoring
Infrastructure for Domain-Specific Modeling Languages," EMSOFT, pp. 19-22.

Clements, P. and Northrop, L. (2001) “Software Product Lines: Practices and Patterns”,
Addison-Wesley Professional.

Czarnecki, K. and Eisenecker, U. W. (2000) “Generative Programming: Methods,
Tools, and Applications”, Addison-Wesley Professional.

Deursen, A. Klint A. and Visser, J. (2006) "Domain-Specific Languages: An Annotated
Bibliography," ACM SIGPLAN Notices.

Durelli R. S. and Durelli, V. H. S. (2012) "F2MoC: A Preliminary Product Line DSL for
Mobile Robots," in VIII Simpósio Brasileiro de Sistemas de Informação (SBSI 2012)
Trilhas Técnicas .

Eclipse Foundation, "Eclipse Modeling Project," [Online]. Available:
https://www.eclipse.org/modeling/.

Greenfield, J. Short, K. Cook, S. and Kent, S. (2004) “Software Factories: Assembling
Applications with Patterns, Models, Frameworks, and Tools”, Wiley.

260

Revista de Sistemas e Computação, Salvador, v. 8, n. 2, p. 245-261, jul./dez. 2018
http://www.revistas.unifacs.br/index.php/rsc

Ishida, Y. (2007) "Challenge for the SPL Approach in Enterprise Software
Development," NRI Information Technology Report, vol. 8.

Istoan, P. A. (2014) “Methodology for the derivation of product behaviour in a Software
Product Line”, Rennes.

Ivanova, V. Sedov, B. and Sheynin, Y. (2014) "Domain-specific languages for
embedded systems portable software development," in 16th Conference of Open
Innovations Association (FRUCT16), Oulu.

Kelly, S. and Tolvanen, J.P. (2007) “Domain-Specific Modeling: Enabling Full Code
Generation”, Wiley-IEEE Computer Society Pr, p. 500.

Magalhães, A. P. Maciel, R. S. P. and Andrade, A. M. (2015) "Towards a Metamodel
Design Methodology: Experiences from a model transformation metamodel design.,"
27th International Conference on Software Engineering and Knowledge Engineering,
pp. 625-630.

Microsoft Corporation, (2016) "Overview of Domain-Specific Language Tools,"
Microsoft, [Online]. Available: https://docs.microsoft.com/pt-
br/visualstudio/modeling/overview-of-domain-specific-language-tools. [Accessed
april 2018].

Microsoft Corporation (2016), "Overview of Domain-Specific Language Tools".

Molnár, Z. Balasubramanian, D. and Lédeczi, Á. (2007) "An Introduction to the
Generic Modeling Environment," in Model-Driven Development Tool Implementers
Forum.

Object Management Group (OMG) (2014), "ABOUT THE OBJECT CONSTRAINT
LANGUAGE SPECIFICATION VERSION 2.4," [Online]. Available:
https://www.omg.org/spec/OCL/About-OCL/.

OMG (2014), "Model Driven Architecture," [Online]. Available:
http://www.omg.org/mda/specs.htm.

OMG (2017), "Meta Object Facility," [Online]. Available: http://www.omg.org/ocup-
2/documents/Meta-ModelingAndtheMOF.pdf.

Polzer, A. and Kowalewski, S. (2009)"Applying software product line techniques in
model-based embedded systems engineering," in ICSE Workshop on Model-Based
Methodologies for Pervasive and Embedded Software.

Schmidt, D. (2006) "Model-Driven Engineering.," IEEE Computer Magazine.

SEI (2012), "Software Engineering Institute," [Online]. Available:
http://www.sei.cmu.edu/productlines/frame_report/PL.essential.act.htm.

Solingen, R. Basili, V. Caldiera, G. and Rombach, H. D. (2002) “Goal Question Metric”
(GQM) Approach, John Wiley & Sons. Inc.

Stahl, T. and Volter, M. (2010) “Model-Driven Software Development.”, Wiley.

Tang S. and Hanneghan, M. (2011) "State of the Art Model Driven Game Development:
A Survey of Technological Solutions for Game-Based Learning," JILR Journal.

261

Revista de Sistemas e Computação, Salvador, v. 8, n. 2, p. 245-261, jul./dez. 2018
http://www.revistas.unifacs.br/index.php/rsc

Tokumoto, S. (2010) "Product Line Development using Multiple Domain Specific
Languages in Embedded Systems," in MoDELS 2010 ACES-MB Workshop
Proceedings, Oslo.

Tolvanen, J.P. (2016) "MetaEdit+ for collaborative language engineering and language
use (tool demo)," in roceedings of the 2016 ACM SIGPLAN International
Conference on Software Language Engineering, Amsterdam.

Wohlin, C. and Aurum, A. (2014) "Towards a decision-making structure for selecting a
research design in empirical software Engineering," Empirical Software Engineering
- Springer.

Zhu, M. (2014) “Model-Driven Game Development Addressing Architectural Diversity
and Game Engine-Integration.

