
Polynomial Algorithm for Quadratic Forms Classification
Using Gaussian Elimination

Jesmmer da S. Alves
Instituto Federal Goiano - Campus Morrinhos

Núcleo de Computação
Morrinhos - Goiás, Brazil
jesmmer.alves@ifgoiano.edu.br

Diane Castonguay
Universidade Federal de Goiás

Instituto de Informática
Goiânia - Goiás, Brazil

diane@inf.ufg.br

ABSTRACT
Existing methods for quadratic forms classification have ex-
ponential time complexity or use approximation that weaken
the result reliability. We developed an algorithm that im-
proves the best case of quadratic form classification in con-
stant time and is polynomial in the worst case. In addition,
new strategies were used to guarantee the results reliability,
by representing rational numbers as a fraction of integers
and to identify linear combinations that are linearly inde-
pendent using Gaussian Elimination.

CCS Concepts
•Mathematics of computing → Nonlinear equations;
•Theory of computation→ Quadratic programming;

Keywords
quadratic forms; eigen problems; Gaussian Elimination; al-
gorithm complexity

1. INTRODUCTION
The quadratic forms have applications in many different

areas in computer science, mathematics, quantum physics,
statistics and others (see some applications in [2, 3, 8, 1, 4,
16, 17, 11]). Here we deal with rational quadratic forms. For
such quadratic forms, there exist a variety of methods and
algorithms that allow, in some cases in polynomial time,
to determine the type of the quadratic form. These are
generally divided into direct methods, expansive methods
and iterative methods.

The quadratic form may be classified as positive definite,
negative definite, positive semidefinite, negative semidefinite
and indefinite. The time complexity of algorithms to de-
termine the classification of a quadratic form depends on
the method and can be influenced by specific cases. Di-
rect methods in general are exponential for any quadratic
form, however, are polynomial for positive definite or neg-
ative definite quadratic forms. Expansive methods are not

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

accurate because of lower/upper bound approximation. The
time complexity of iterative methods is related to the desired
approximation.

A problem comes from the fact that iterative methods use
mathematical operations that break down the entries, show-
ing a result with a large number of decimal places (see some
resulting problems in [12, 13]). However, new strategies can
be used to avoid this fractionation and provides a reliable
result, such as: to store every matrix entry as the quotient of
two integer; and use Gaussian Elimination to easy identify
linear combinations of variables that are linearly indepen-
dent.

The paper is organized as follows: in Section 2, we de-
scribe the quadratic forms basics concepts and the time com-
plexity of known algorithms; in Section 3, we present some
strategies that can be used in the quadratic form classifi-
cation and make the result more reliable; in Section 4, we
introduce a solution that makes the quadratic forms classifi-
cation in polynomial time, it was divided in two algorithms:
one that improves the best case of quadratic form classifica-
tion in time O(1); and one that evaluate all other cases in
polynomial time. In Section 5, the final considerations are
presented focusing on the analysis of the results achieved.

2. QUADRATIC FORMS

2.1 About quadratic forms
A quadratic form related to a symmetric matrix1 An×n

and evaluated in a vector xn×1 is defined as [18]:

Q(x)=(x1,···, xn)·


a11 . . . a1n
...

...
...

an1 . . . ann

·

x1
...

xn

=
∑

1≤i≤j≤n

aijxixj

(1)
Every quadratic form can be represented by a symmetric

matrix. Given a non-symmetric matrix B, the symmetriza-
tion of B is given by A = 1

2
(B + Bt). Therefore, A is

symmetric and Q(x) = xtAx = xtBx. The quadratic forms
have a critical point, when x = 0, which is Q(x) = xtAx = 0.
Therefore, all quadratic forms may be classified as the re-
sulting polynomial of the expression Q(x) = xtAx, such
as positive definite, negative definite, positive semidefinite,
negative semidefinite and indefinite.

1Here, we will focus on symmetric matrix of rational values.

DOI: 10.36558/rsc.v11i3.7391

Revista de Sistemas e Computação, Salvador, v. 11, n. 3, p. 17-22, set./dez. 2021 
http://www.revistas.unifacs.br/index.php/rsc

https://dx.doi.org/10.36558/rsc.v11i3.7391


A quadratic form is positive definite (respectively neg-
ative definite) when Q(x) = xtAx > 0 (respectively
Q(x) = xtAx < 0) for all x 6= 0. When Q(x) = xtAx ≥ 0,
the quadratic form is positive semidefinite. Likewise,
when Q(x) = xtAx ≤ 0, the quadratic form is negative
semidefinite. Finally, the quadratic form is indefinite
if Q(x) = xtAx > 0 for some values of x and Q(x) =
xtAx < 0 for other values of x. The reader can see more
about quadratic forms in [1, 18].

2.2 Quadratic forms classification
One way to verify whether a quadratic form is positive def-

inite is through its naturally ordered principal minors (see
more details in [6]). In general, this technique have cost
O(n4) mainly influenced by operations like matrix multipli-
cations.

Direct expansion is a more complete method for identify-
ing all quadratic forms types [10]. It can be done through
the principal minors of the matrix. Let A be a matrix of or-
der n. A principal submatrix of order k of A is obtained
by deleting n−k columns and the corresponding n−k lines
of A. The determinant of a principal submatrix of order k
is called principal minor of order k of A. In this case, the
number of determinants of various orders is exponential.

The classification of quadratic forms also can be done by
identification of the matrix characteristic polynomial, and
then calculating limits to the roots of this polynomial (for
more details see [14, 20]). The characteristic polynomial
of a symmetric matrix An×n = (aij) is the determinant
det(A− λI) in λ of degree n.

Find the roots of a polynomial can be described as ab-
stract math problem to find all the eigenvalues λ that satisfy
these equation. After finding the characteristic polynomial,
lower and upper bounds can be used to determine the range
that contains all the roots of this polynomial. Despite be-
ing quite attractive, it makes the classification of quadratic
forms not accurate, just because the existing methods re-
turn a lower/upper bound approximation and not a tight
lower/upper bound.

Another option is to make use of iterative methods, such
as algorithm QR, Jacobi and Cholesky decomposition [7,
15, 22]. Most of iterative methods have polynomial time
complexity. However, due to the difficulty in finding exact
eigenvalues, iterative methods are not stable and usually
are implemented with an approximation to the number of
eigenvalues decimal places (rounding and cancellations er-
rors). Although some new strategies are more stable (see
[19, 9]), in situations where cancellation errors can be very
serious in orthogonalization steps, it is necessary to consider
even more stable methods.

3. NEW STRATEGIES

3.1 Rational numbers as a fraction of Integers
Some operations, like division and radical, can increase

the number of decimal places and make the result not reli-
able, or difficult to be analyzed. Fortunately, rational num-
bers can be represented like a fraction of integers. For
this purpose, each entry of the matrix2 representing the

2Most methods to make the classification of quadratic forms
uses matrices.

quadratic form can be expressed as the quotient of two in-
tegers.

Next are described Algorithms 1-4 to perform addition,
subtraction, division and multiplication using fraction of in-
tegers. In this case, a, b and r are arrays with two positions
(numerator and denominator). The function Gcd returns
the greatest common divisor between two integers and is
used to reduce the numbers to the lowest value to be stored
in the matrix [21]. A zero should be represented by [0, 1]
and the minus sign always accompanies the numerator (e.g.:
[−1, 2]). It is assumed that a[1] and b[1] are nonzero.

Algorithm 3 uses Algorithm 4 to divide a by b and get
as a result a rational number represented like a fraction of
integers.

Algorithm 1: Sum(a, b)

Input: Arrays a and b.
Output: r = a+ b.

1 r[1]← a[1] ∗ b[1]
2 r[0]← a[0] ∗ b[1] + b[0] ∗ a[1]
3 gcd← Gcd(r[0], r[1])
4 r[0]← r[0]/gcd
5 r[1]← r[1]/gcd
6 return r

Algorithm 2: Sub(a, b)

Input: Arrays a and b.
Output: r = a− b.

1 r[1]← a[1] ∗ b[1]
2 r[0]← a[0] ∗ b[1]− b[0] ∗ a[1]
3 gcd← Gcd(r[0], r[1])
4 r[0]← r[0]/gcd
5 r[1]← r[1]/gcd
6 return r

Algorithm 3: Div(a, b)

Input: Arrays a and b.
Output: r = a

b
.

1 b2[0]← b[1]
2 b2[1]← b[0]
3 r ← Mult(a, b2)
4 return r

Algorithm 4: Mult(a, b)

Input: Arrays a and b.
Output: r = a ∗ b.

1 r[0]← a[0] ∗ b[0]
2 r[1]← a[1] ∗ b[1]
3 gcd← Gcd(r[0], r[1])
4 r[0]← r[0]/gcd
5 r[1]← r[1]/gcd
6 return r

Revista de Sistemas e Computação, Salvador, v. 11, n. 3, p. 17-22, set./dez. 2021 
http://www.revistas.unifacs.br/index.php/rsc

18



3.2 Classification using Gaussian Elimination
Berger M. [5] has shown that for a quadratic form Q with

n variables, there are linear combinations of variables li lin-
early independent and numbers ci such that Q =

∑n
i=1 cil

2
i ,

for i ≤ n.
Gaussian Elimination is a method to write a polynomial

of degree 2 in n variables as perfect squares [16]. Thus, the
type of a given quadratic form can be identified by Gaus-
sian Elimination according to the number of perfect squares
affected by sign “+” (positive) and sign “-” (negative), as
follows: positive definite, if all squares are positive; nega-
tive definite, if all squares are negative; positive semidefinite
(negative semidefinite), if some squares are positive (neg-
ative) and others null; and indefinite, if some squares are
positive and others are negative.

Let Q be a nonzero quadratic form. The application of
Gaussian Elimination may be carried out as follows:

• If aii 6= 0 (for some i ∈ {1, . . . , n}), eliminate one
variable. For sake of simplicity, suppose that i = 1
and Gaussian Elimination proceed as follows:

Q(x) = ax21 + x1f(x2, . . . , xn) + p(x2, . . . , xn)

= a
(
x1+

f(x2,...,xn)
2a

)2
− f(x2,...,xn)2

4a
+p(x2, . . . , xn)

(2)
where f is a linear combination and p a quadratic form.
So, the new quadratic form is:

Q′(x) = p(x2, . . . , xn)− f(x2,...,xn)2

4a
(3)

Example 1. Let Q(x) = x22 + x1x2 + x1x3. Apply-
ing Gaussian Elimination provides two positive squares
and one negative.

Q(x) = x22 + x1x2 + x1x3

= (x2 + 1
2
x1)2 − 1

4
x21 + x1x3

= (x2 + 1
2
x1)2 − 1

4
(x1 − 2x3)2 + x23

• If aii = 0, aij 6= 0 and ajj = 0 (for some i, j ∈
{1, . . . , n} and i 6= j), eliminate two variables.3 For
sake of simplicity, suppose that i = 1 and j = 2. So,
Gaussian Elimination proceed as follows:

Q(x) =ax1x2+x2f(x3,···, xn)+x1g(x3,···, xn)+p(x3,···, xn)
= (ax1 + f) · (x2 + g

a
)− f ·g

a
+ p(x3, . . . , xn)

= 1
4
((l1 + l2)2 − (l1 − l2)2)− f ·g

a
+ p(x3, . . . , xn)

(4)
where f, g are linear combinations, p is a quadratic
form, l1 = (ax1 + f) and l2 = (x2 + g

a
). So, the new

quadratic form is:

Q′(x) = p(x3, . . . , xn)− 1
a
f(x3, . . . , xn) · g(x3, . . . , xn)

(5)
In this case, Q(x) is always indefinite.

Example 2. Let Q(x) = x1x2+x1x3+x2x3. Apply-
ing Gaussian Elimination provides one positive square
and two negatives.

Q(x) = x1x2 + x1x3 + x2x3

= (x1 + x3)(x2 + x3)− x23
= 1

4
(x1 + x2 + 2x3)2 − 1

4
(x1 − x2)2 − x23

3In the case of ajj 6= 0, it must return to the previous case
(Equation (2)).

4. A POLYNOMIAL ALGORITHM
The objective of the algorithms presented in this section is

to use Gaussian Elimination to complete the squares and get
the precise classification of a given quadratic form. Theorem
3 and Corollary 4 were used to identify positive definite and
positive semidefinite quadratic forms, respectively.

Theorem 3. A quadratic form Q is positive definite if
and only if Gaussian Elimination provides n squares affected
by the sign “+” [16].

Corollary 4. A quadratic form Q is positive semidef-
inite if and only if Gaussian Elimination provides k ≤ n
squares and each of them is affected by the sign “+”.

Proof. Gaussian Elimination eliminates one variable and
provides a linear form (affected by the sign “+” or “-”), or
eliminates two variables and provides two linear forms (one
affected by sign “+” and other by “-”). Thus, k must be at

most equal n. Let Q =
∑k

i=1 cil
2
i , ci 6= 0 and k ≤ n, ob-

tained by Gaussian Elimination. Since the li’s are linearly
independents, if Q is positive semidefinite, then ci ≥ 0 for
all i. The other hand follows easily. 2

For better organize the subjects, we divided this section
in 3 parts: a model of matrix representation to store and
update the quadratic form elements; an algorithm that im-
proves the best case of quadratic form classification; and an
algorithm that analyses all other cases.

4.1 Model of matrix representation
Algorithms 5 and 6 use a model of matrix representation

to store and update the quadratic form elements, during the
application of Gaussian Elimination. For this, Q is repre-
sented by an upper triangular matrix MQ, with its entries
defined according to the coefficients of each term. There-
fore, the coefficient of square terms are placed in the matrix
diagonal and the others coefficients are placed above this.

In other words, the coefficient of the term x1x2 is placed
in MQ at the row 1 and column 2 as the quotient of two
integers. For example, the quadratic form Q(x) = x21+2x22+
5x23 + 2x1x2 − 4x2x3, is represented by an upper triangular
matrix as follows:

Example 5. Matrix representation of Q(x).

MQ =


1
1

2
1

0
1

0
1

2
1

−4
1

0
1

0
1

5
1


4.2 Best case constant algorithm

This subsection describes an algorithm that explore some
situations in which the quadratic form classification can be
done in a faster time. Lemmas 6 and 7, and Theorem 8
justify these situations.

Lemma 6. If aii = 0, aij 6= 0 and ajj 6= 0, for some
i, j ∈ {1, . . . , n}, then Q is indefinite.

Proof. Suppose that i = 1 and j = 2. We first eliminate
x2. Afterward, the coefficient of x21 is nonzero and we can

Revista de Sistemas e Computação, Salvador, v. 11, n. 3, p. 17-22, set./dez. 2021 
http://www.revistas.unifacs.br/index.php/rsc

19



eliminate x1. Follows the Elimination:

Q(x)=bx22+ax1x2+x2f(x3,···, xn)+x1g(x3,···, xn)+p(x3,···, xn)

= b
(
x2 + ax1+f

2b

)2 − (ax1+f)2

4b
+ x1g + p

= b
(
x2 + ax1+f

2b

)2 − a2

4b
x21 + x1

(
2bg−af

2b

)
− f2

4b
+ p

= b
(
x2+ ax1+f

2b

)2− a2

4b

(
x1− 2bg−af

a2

)2
+ (2bg−af)2

4a2b
− f2

4b
+p

where f and g are linear combinations, p is a quadratic form.

Since sgn(−a2

4b
) = −sgn(b), we have that Q is indefinite. 2

Lemma 7. If aii = 0, aij 6= 0 and ajj = 0, for some
i, j ∈ {1, . . . , n} and i 6= j, then Q is indefinite.

Proof. In this case, Gaussian Elimination will eliminate
two variables and provides two linear forms, one affected by
sign “+” and other by “-” (see Equation (4)). Therefore, Q
is indefinite. 2

Theorem 8. If Q is positive definite (positive semidefinite)
then aii > 0 (aii ≥ 0 and if aii = 0 then aij = 0, for all
j ∈ {i+ 1, . . . , n}), for i ∈ {1, . . . , n}.

Proof. Suppose that aii ≤ 0, for some i ∈ {1, . . . , n}. We
can begin Gaussian Elimination by aii. By Theorem 1, Q
is not positive definite. If aii 6= 0, then by Corollary 1, Q
is not positive definite. Therefore, if aii = 0. Suppose that
there exist j ∈ {1, . . . , n} with aij 6= 0. By Lemas 6 and 7,
Q is indefinite and thus cannot be positive semidefinite. 2

We use Lemmas 6 and 7, and Theorem 8 to develop a
constant algorithm that easily identify some positive defi-
nite, semidefinite and indefinite quadratic forms. Algorithm
5 loops through all elements on diagonal of matriz represent-
ing the quadratic form and gets the number of positives, neg-
atives and zero elements. Meanwhile, if it finds a negative
element and there already is a positive one, or the other way
around, the process terminates showing that Q is indefinite.

Otherwise, the number of zero elements are used to iden-
tify other indefinite cases. We also developed a polynomial
algorithm for the unresolved cases. Algorithm 5 is O(n3) in
the worst case, mainly influenced by the call of QRecog-
nition (see Algorithm 6). However, it is O(1) in the best
case. It happens when it finds a negative element and there
already is a positive one, or vice versa. And more, the Al-
gorithm 5 is O(n) when the diagonal of MQ is zero.

4.3 General case polynomial algorithm
Algorithm 6 supposes that Q is not negative definite or

semidefinite and tries to identify situations that character-
izes definite, semidefinite or indefinite quadratic forms. Ob-
serve that it is the case for the first call of Algorithm 6, but
not necessarily afterwards. In a simple way, it receives MQ,
complete the first perfect square, update the quadratic form
and call itself recursively (doing the same without the line
and column of the perfect square found) until MQ became a
simple element or the process fails in some test. The func-
tions in Subsection 3.1 were used to keep the small number
of decimal places.

According to Gaussian Elimination, the command at line
8 updates the xii elements in Q and, the command at line

Algorithm 5: VerifyDiag(MQ)

Input: MQ = matrix of quadratic form Q 6= 0, n =
number of coefficients with square terms.

Output: Q classification.
1 pos← 0, neg ← 0, zero← 0
2 for i← 1 to n do
3 if aii = 0 then
4 zero← zero+ 1
5 else
6 if aii > 0 then
7 if neg > 0 then return “Q is

indefinite!”
8 else pos← pos+ 1

9 else
10 if pos > 0 then return “Q is

indefinite!”
11 else neg ← neg + 1

12 if zero = n then
13 return “Q is indefinite!”

14 if pos 6= 0 then /* pos 6= 0 and neg 6= 0 */

15 return QClassification(MQ,“+”, 0)
16 else
17 return QClassification(−MQ,“-”, 0)

12 updates the xij elements, as follows:

xii = aii −
a2ii

4a11
, xij = aij −

a1ia1j
2a11

(6)

for 2 ≤ i ≤ n and i + 1 ≤ j ≤ n. During this process, if it
finds some aii < 04, since we check if Q is positive definite,
Q should be indefinite.

The variable t is used to identify whether Q > 0 or Q ≥ 0,
for positive definite and positive semidefinite cases, and sim-
ilarly for negative definite and negative semidefinite cases.
The loop command at line 3 identifies semidefinite and in-
definite cases, according to Lemmas 6 and 7.

Since the loop commands in lines 7 and 11 (used to make
Gaussian Elimination) has cost O(n2) and it may call itself
recursively n − 1 times, the Algorithm 6 is O(n3) in the
worst case (the complexity of gcd function has been lessened
throughout the whole solution).

Theorem 9. Algorithm 6 is correct.

Proof. We first observe that every call of Algorithm 6 de-
creases the number of lines and columns of MQ in 1 (see line
13). Thus, eventually n = 1, the test in line 1 is False and
the algorithm terminates. Otherwise, the process fails on
the test at line 4 or on the test at line 9 and the algorithm
terminates.

Recall that Q is negative definite (negative semidefinite)
if and only if −Q is positive definite (positive semidefinite).
The fact if we deal with Q or −Q is defined in the parameter
t as “+” or “-”. Observe that, in Algorithm 5, if pos 6= 0
(neg 6= 0) then Q (−Q) cannot be negative definite nor
negative semidefinite. Thus, the algorithm just verify if Q
(−Q) is positive definite, positive semidefinite or indefinite.

We prove the correctness of QRecognition by induction
on n. The base case is when n = 1. In this case, MQ has one

4At beginning, aii ≥ 0 for all i.

Revista de Sistemas e Computação, Salvador, v. 11, n. 3, p. 17-22, set./dez. 2021 
http://www.revistas.unifacs.br/index.php/rsc

20



Algorithm 6: QClassification(MQ, t, szero)

Input: MQ = matrix of quadratic form Q, t =“+” or
“-”.

Output: Q classification.
1 if n ≥ 2 then
2 if a11 = 0 then
3 for k ← 2 . . . n do
4 if a1k 6= 0 then
5 return “Q is indefinite!”

6 szero← 1

7 else
8 for i← 2 . . . n do
9 aii ← Sub(aii, Div(Mult(a1i, a1i),

Mult([4, 1], a11)))
10 if aii < 0 then
11 return “Q is indefinite!”

12 for j ← i+ 1 . . . n do
13 aij ← Sub(aij , Div(Mult(a1i, a1j),

Mult([2, 1], a11)))

14 QClassification(MQ(2 . . . n, 2 . . . n), t, szero)

15 else
16 if a11 = 0 then szero← 1
17 if szero = 0 then
18 if t = “+” then
19 return “Q is positive definite!”

20 else
21 return “Q is negative definite!”

22 else
23 if t = “+” then
24 return “Q is positive semidefinite!”

25 else
26 return “Q is negative semidefinite!”

element a11 ≥ 0. If a11 6= 0, then Q is positive definite. If
not, Q is positive semidefinite. Let MQ be an n×n matrix.
At line 2 to 4, the algorithm verify the condition of Lemmas
6 and 7. If it is valid, we have that Q is indefinite.

If a11 = 0, in the line 5, then zero = 1. In this case, a1j =
0 for all j and x1 does not appears inQ. In the line 13, we use
the algorithm to see the classification of Q′ = Q, where M ′Q
is (n−1)×(n−1) matrix. Since szero = 1, we can have that
Q in indefinite or positive semidefinite. If a11 6= 0, the lines 7
to 12 calculate Q′ according to Gaussian Elimination. Thus,
Q = a11l

2 +Q′ for some linear combination l. At line 9, we
verify the new aii ≥ 0 for all i, since if not we will have that
Q′ is not positive definite nor positive semidefinite. Thus,
Q is indefinite.

Therefore, when called QRecognition at line 13 for Q′,
all elements of the diagonal of M ′Q are non-negative. More-
over, Q is positive definite (positive semidefinite) if and only
if Q′ is positive definite (positive semidefinite). 2

Theorem 10. Algorithm 5 is correct.

Proof. Algorithm 5 uses the command at line 2 to analy-
ses the n elements on MQ diagonal. And if necessary, call
the Algorithm 6 for unresolved cases. Therefore, since Algo-

rithm 6 terminates (see Theorem 9), Algorithm 5 terminates.
To prove that Algorithm 5 shows the correct result, we have
to analyse three different situations according to Gaussian
Elimination:

1. zero = n, Q is indefinite (line 13). In this case, aii = 0
for all i ∈ {1, . . . , n}. Assuming that Q is a nonzero
quadratic form, the method eliminates two variables,
provides two squares and Q is indefinite (see Lemma
7).

2. aii > 0 and neg 6= 0, Q is indefinite (line 7). This
conditions means that the process find an aii > 0 and
there already is at most one ajj < 0, for j ∈ {1, . . . , i−
1}, in Q. We can begin Gaussian Elimination by aii or
ajj . By Theorem 1 and Corollary 1, we conclude that
Q must be indefinite.

3. aii < 0 and pos 6= 0, Q is indefinite (line 10). It
follows easily as in 2.

Since the Algorithm 5 shows the correct result and termi-
nates, it is correct. 2

5. FINAL REMARKS AND COMMENTS
The algorithms presented in this paper have a polynomial

cost (O(1) in the best case and O(n3) in the worst case) and
are similar to the best known results (which are iterative and
expansive) to identify the type of a quadratic form. In this
work, an important issue with respect to the algorithms is
the considerable improvement in the accuracy of the results.

In order to make a comparison, our algorithms present
the exact type of the quadratic form (positive definite, pos-
itive semidefinite, etc.). Some strategies such as Cholesky
Decomposition presents a number, probably with a large
number of decimal places, which may have been truncated
to facilitate processing and, therefore, harm the analysis
of the results. For example, a positive definite quadratic
form can be interpreted as positive semidefinite if the result
0.0000000001 is truncated to 0.000.

Gaussian Elimination to complete the squares allowed a
direct look at a simple aspect, but very efficient. The sign
that affects every perfect square is a reliable way to identify
linear forms that are linearly independent and, using simple
strategies to complete the squares, we could determine the
type of a quadratic form.

The strategy of representing rational numbers as a frac-
tion of integers use basic and direct operations that main-
tain a reliable result (with a small number of decimal places).
This process is extremely important because it ensure an ac-
curate result that is easy to be identified (unlike the results
provided by iterative algorithms).

6. ACKNOWLEDGMENTS
The authors would like to thank Instituto Federal Goiano

Campus - Morrinhos and Universidade Federal de Goiás for
the support during this research.

7. REFERENCES
[1] N. Alon, K. Makarychev, Y. Makarychev, and

A. Naor. Quadratic forms on graphs. Inventiones
mathematicae, 163(3):499–522, 2006.

Revista de Sistemas e Computação, Salvador, v. 11, n. 3, p. 17-22, set./dez. 2021 
http://www.revistas.unifacs.br/index.php/rsc

21



[2] J. Alves, D. Castongay, and T. Brüstle. A polynomial
recognition of unit forms using graph-based strategies.
Discrete Applied Mathematics, 253:61–72, 2019.

[3] J. Alves, D. Castonguay, and T. Brüstle. Unit form
recognition by mutations: Application of mutations in
the search of positive roots. Discrete Applied
Mathematics, 291:223–236, 2021.

[4] E. Bayer-Fluckiger, D. Lewis, and A. Ranicki.
Quadratic forms and their applications. In Proceedings
of the Conference on Quadratic Forms and Their
Applications (University College Dublin, 1999.

[5] M. Berger. Geometry I. Springer, 2009.

[6] R. L. Burden and J. D. Faires. Numerical analysis 8th
ed. 2005.

[7] R. Byers. A hamiltonian-jacobi algorithm. IEEE
transactions on automatic control, 35(5):566–570,
1990.

[8] A. Cosentino and S. Severini. Weight of quadratic
forms and graph states. Physical Review A,
80(5):052309, 2009.

[9] Z. Drmač and K. Veselić. New fast and accurate jacobi
svd algorithm. i. SIAM Journal on matrix analysis
and applications, 29(4):1322–1342, 2008.

[10] R. M. Freund. Quadratic functions, optimization, and
quadratic forms. Massachusetts Institute of
Technology, 2004.

[11] L. J. Gerstein. Integral quadratic forms and graphs.
Linear Algebra and its Applications, 585:60–70, 2020.

[12] L. Giraud, J. Langou, and M. Rozloznik. The loss of
orthogonality in the gram-schmidt orthogonalization
process. Computers & Mathematics with Applications,
50(7):1069–1075, 2005.

[13] L. Giraud, J. Langou, M. Rozložńık, and J. van den
Eshof. Rounding error analysis of the classical
gram-schmidt orthogonalization process. Numerische
Mathematik, 101(1):87–100, 2005.

[14] G. Helmberg, P. Wagner, and G. Veltkamp. On
faddeev-leverrier’s method for the computation of the
characteristic polynomial of a matrix and of
eigenvectors. Linear algebra and its applications,
185:219–233, 1993.

[15] N. J. Higham. Cholesky factorization. Wiley
Interdisciplinary Reviews: Computational Statistics,
1(2):251–254, 2009.

[16] N. J. Higham. Gaussian elimination. Wiley
Interdisciplinary Reviews: Computational Statistics,
3:230–238, 2011.

[17] A. Lerario. Convex pencils of real quadratic forms,
volume 48. Springer, 2012.

[18] O. T. O’Meara. Introduction to quadratic forms,
volume 117. Springer, 2013.

[19] C. C. Paige, M. Rozloznik, and Z. Strakos. Modified
gram-schmidt (mgs), least squares, and backward
stability of mgs-gmres. SIAM Journal on Matrix
Analysis and Applications, 28(1):264–284, 2006.

[20] R. Rehman and I. C. Ipsen. Computing characteristic
polynomials from eigenvalues. SIAM journal on
matrix analysis and applications, 32(1):90–114, 2011.

[21] J. Tattersall. Finding the greatest common divisor.
Mathematical Time Capsules: Historical Modules for
the Mathematics Classroom, (77):199, 2011.

[22] H. A. van der Vorst. Computational methods for large
eigenvalue problems. 2002.

Revista de Sistemas e Computação, Salvador, v. 11, n. 3, p. 17-22, set./dez. 2021 
http://www.revistas.unifacs.br/index.php/rsc

22




