
A Tool for Determining Developer Expertise in Specific
Frameworks or Libraries

Guilherme Henrique de Assis
Universidade FUMEC

ghdeassis@gmail.com

Amanda Damasceno de Souza
Universidade FUMEC

amanda.dsouza@fumec.br

ABSTRACT
Background: In software development, the usage of frame-

works is widespread to facilitate code writing. However,
evaluating a developer’s expertise in a specific framework
poses challenges. It is difficult to determine the extent of
a developer’s familiarity with a framework, whether they
have a deep understanding or limited knowledge. This in-
formation is valuable in various scenarios, such as during
the hiring process. Aims: This work proposes a tool called
FwkAnalyzer, which aims to analyze a developer’s exper-
tise in a specific framework or library. Method: The tool
generates an analysis of the developer’s framework usage by
comparing their metrics with a benchmark. FwkAnalyzer
constructs this benchmark by analyzing contributions from
multiple developers in GitHub repositories that utilize the
framework. To demonstrate the tool’s effectiveness, an ex-
periment was conducted with a JavaScript library. Results:
FwkAnalyzer extracted metrics from GitHub repositories to
create the benchmark, providing insights into the develop-
ers’ usage of the library. Additionally, a real developer’s
GitHub profile was used to generate an analysis of their li-
brary usage, comparing the metrics with the benchmark.
Conclusions: The created tool was capable of implementing
the proposed work, as demonstrated with a real JavaScript
library. FwkAnalyzer enables the evaluation of a developer’s
expertise in a particular technology, providing valuable in-
sights by comparing their usage with other developers.

CCS Concepts
•Software and its engineering → Software libraries and

repositories; •Social and professional topics → Project and
people management;

Keywords
Developer Expertise, Framework, Library

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

The field of software development is rapidly expanding
and finding applications in various scenarios, leading to an
increased demand for software developers [14]. Despite the
continuous advancements in the state of the art of software
development, it remains a challenging task that requires a
high level of knowledge. Developers are constantly exposed
to new technologies, components, and ideas [29].

Developer skills are crucial in team dynamics and deter-
mining developer efficiency. These skills can be categorized
into technical skills, such as coding competency and quality
of work, and social skills, including collaboration proficiency,
project management ability, and motivation [32]. Regarding
technical skills, one aspect that significantly impacts soft-
ware quality and productivity is the developer’s technical
experience and knowledge [14].

Assessing developers’ expertise is essential in various sit-
uations, such as during the hiring process, bug assignment,
or contributing to a software project [18].

In software development, the usage of frameworks is wide-
spread to facilitate code writing. A software framework is
a collection of shared code with generic functionality that
developers can reuse in their code to expedite the devel-
opment process [10]. However, despite the common use of
frameworks in software development, evaluating the depth
of their usage in a specific project remains challenging. For
instance, it is difficult to determine whether a project uti-
lizes almost all the features of a framework or only a small
portion.

Evaluating the extent to which a project utilizes a frame-
work can be beneficial in certain situations. For example,
during the hiring process, automatically assessing the depth
of framework usage in a developer’s projects can help iden-
tify their expertise in that particular framework.

Assessing the usage level of a framework in a project poses
challenges. For instance, in a framework, certain commands
may be used more frequently, and that is acceptable because
they might be the primary commands. Thus, it is incorrect
to conclude that a project does not utilize a framework effec-
tively solely based on the absence of certain commands. An-
other challenge is that the importance of command groups
can vary depending on the context, making generalization
difficult. In light of these considerations, we formulate the
following research question: How can we assess a developer’s
expertise in a specific framework or library?

To address this question, the main objective of this work is
to propose a tool capable of assessing a developer’s expertise
in a specific framework or library.

FwkAnalyzer utilizes code analysis techniques and met-

Revista de Sistemas e Computação, Salvador, v. 13, n. 2, p. 4-16, maio/ago. 2023 
https://revistas.unifacs.br/index.php/rsc

4

DOI: 10.36558/rsc.v13i2.8156

https://dx.doi.org/10.36558/rsc.v13i2.8156


rics generation to provide a data-driven approach for eval-
uating developer expertise. By analyzing developers’ code
contributions and tracking their usage of framework-specific
commands, FwkAnalyzer generates comprehensive metrics
that capture the frequency and coverage of framework us-
age. These metrics enable a more objective assessment of a
developer’s proficiency in the framework, helping organiza-
tions make informed decisions.

2. BACKGROUND
In this section, we delve into the background of the re-

search topic, focusing on key aspects that are instrumental
in assessing developer expertise in specific frameworks. We
explore the concepts of Developer Expertise, Frameworks,
Version Control Systems, and Software Metrics, shedding
light on their interconnectedness and their role in validating
the hypothesis.

The first and second subsections are discussed due to their
direct relation to the research topic. As the work aims to
create a tool to assess developer expertise in specific frame-
works or libraries, we begin this section by introducing these
concepts.

The subsequent section focuses on Version Control Sys-
tems, as they serve as the main source of data for the study.
Additionally, we introduce the concept of Software Metrics,
as one of the key features of the tool is its ability to gener-
ate software metrics to aid in assessing developer expertise.
Lastly, in the final subsection, we discuss related work.

2.1 Developer Expertise
The term expert is defined by Merriam-Webster [16] as

someone with special skills or knowledge representing mas-
tery of a particular subject, derived from training or expe-
rience. In certain fields, such as individual sports, exper-
tise can be measured more objectively using performance
metrics, while in other domains, this measurement becomes
more challenging [11].

Expertise is not solely innate talent but the result of ded-
icated application to a chosen field [5]. Moreover, achieving
expertise in certain fields requires a minimum period of prac-
tice and engagement to attain higher performance [11].

Experts possess a greater quantity of domain-relevant kno-
wledge compared to novices. However, the importance lies
not only in the quantity but also in how their knowledge is
organized, accessible, functional, and efficient [2]. Experts
tend to organize their knowledge based on meaning, estab-
lishing stronger and more numerous links among concepts,
while novices often rely on surface-level information [2].

It is crucial to differentiate expertise from experience, as
significant experience does not necessarily equate to exper-
tise. Similarly, individuals with similar expertise levels may
possess different levels of experience, and vice versa [13].

Developer expertise can be assessed qualitatively, such as
evaluating a developer’s communication skills, as well as
quantitatively, such as measuring the quality of their source
code, to indicate their familiarity with specific skills and
proficiency levels. These assessments find applications in
various fields, including effective task allocation [36].

Software development expertise can be measured consid-
ering different aspects. For instance, Baltes and Diehl [1]
defined several concepts that contribute to determining a
developer’s expertise: experience, knowledge, source code
quality, skills, and work context.

Experience encompasses both quantity and quality. Quan-
tity refers to the duration of experience, such as the number
of years spent as a developer. Quality, on the other hand,
pertains to the depth of knowledge gained during that expe-
rience, such as whether the developer has primarily worked
on small projects or larger enterprise ones.

Knowledge relates to a developer’s specific understanding
of a technology, encompassing both depth (i.e., the level of
expertise) and breadth (i.e., the range of topics covered), in-
cluding algorithms, data structures, and programming para-
digms.

Source code quality is a vital aspect, and according to
Baltes and Diehl [1], certain properties indicate expertise,
such as well-structured and readable code, as well as good
performance and maintainability.

Skills, as emphasized by Baltes and Diehl [1], include
communication skills, which enable developers to effectively
share knowledge within a team and seek assistance when
needed.

Finally, work context refers to a developer’s ability to han-
dle various situations, such as managing interpersonal rela-
tionships, working under time constraints, and dealing with
ambiguous or ill-defined requirements.

The field of Developer Expertise is inherently multidis-
ciplinary, as argued by Baltes and Diehl [1]. Addressing
the challenges encountered in Software Engineering requires
the study and integration of different disciplines and areas
of knowledge, including Computer Science, Administration,
Education, Psychology, Sociology, Linguistics, and Produc-
tion Engineering. Software, being complex, modifiable, and
abstract, continuously pushes the boundaries of human ca-
pacity [25].

Davenport et al. [8] explain the differences between data,
information, and knowledge. Data refers to a set of distinct
and objective facts pertaining to events. In an organiza-
tional context, data is often described as structured records
of transactions. Information, on the other hand, is a mes-
sage, typically in the form of a document or audible/visible
communication, with a sender and receiver. The purpose of
information is to change the recipient’s perspective, and it
is the recipient who determines whether a received message
qualifies as information or not. Data becomes information
when its creator adds meaning to it.

Assessing a developer’s expertise can be seen as transform-
ing data into information. Many studies analyze raw data
produced by developers, such as source code, and generate
information from it by classifying the developer’s expertise
level accordingly.

2.2 Framework
Despite the continuous advancements in the field of soft-

ware development, it remains a challenging task that de-
mands a high level of knowledge. Developers are constantly
exposed to new technologies, components, and ideas [29].
Frameworks are utilized in these scenarios as they promise
increased productivity and reduced time-to-market through
design and code reuse [28].

A software framework is a collection of shared code with
generic functionality that developers can reuse in their own
code to expedite the development process [10]. On the other
hand, a software library consists of pre-written code that
developers can use to incorporate additional functionality
without having to write it themselves [33].

Revista de Sistemas e Computação, Salvador, v. 13, n. 2, p. 4-16, maio/ago. 2023 
https://revistas.unifacs.br/index.php/rsc

5



In the software development field, the terms framework
and library are often used interchangeably. However, there
is a key distinction: a library typically focuses on imple-
menting specific functionalities, whereas a framework is of-
ten composed of libraries that serve a more general purpose.

Edwin [10] describes four key features of frameworks: de-
fault behavior, inversion of control, extensibility, and non-
modifiable framework code. Default behavior implies that
the framework operates in a predetermined manner if not
customized by the user. Inversion of control means that
the control flow is dictated by the framework rather than
the application. Extensibility refers to the ability of users
to extend the framework’s functionality by replacing default
code with their own. Lastly, non-modifiable framework code
indicates that users can extend the framework but cannot
modify its core code. This feature ensures that the frame-
work eases the development process by taking care of its
own responsibilities, allowing developers to focus on their
specific application requirements.

2.3 Version Control Systems
A Version Control System (VCS) is a system that tracks

and manages changes made by software developers, facili-
tating the development of an evolving software artifact [37].
It enables developers to maintain a historical record of all
the files in a project, which is commonly referred to as a
repository [30].

VCS systems serve various purposes. One of the most
widely used applications is software merging, which involves
consolidating different changes made by multiple users to
the same files into a unified version. VCS systems can track
all the changes in the project history, storing information
such as the author, date, and specific file changes. Another
important feature is the ability to create software branches,
allowing users to work concurrently on separate branches
within the same project without interfering with each other’s
work. These branches can later be merged into the main
branch as needed [37]. In this context, the term commit
refers to the action of updating the repository with one’s
changes [30].

VCS systems offer several advantages, including speeding
up the software development process, enabling collaboration
among multiple individuals working on the same files with-
out overwriting each other’s work, and providing the ability
to create multiple versions or tracks of the same repository
[30]. Additionally, having a comprehensive history of each
file is helpful in situations where it is necessary to trace and
diagnose potential issues caused by recent changes.

There are two main types of VCS: centralized and de-
centralized. Centralized VCS systems have a single central
repository, and users need a network connection to access it.
In contrast, decentralized VCS systems allow each user to
have a complete copy of the repository locally, enabling them
to work with the repository even without a network connec-
tion. Network connectivity is only required when sharing
changes with other users [37].

Git is an example of a decentralized VCS. GitHub, a plat-
form that utilizes Git, allows users to host their repositories
online and provides additional features to support social in-
teraction within repositories [4]. One example of such inter-
action is the ability for users to star repositories they like,
use, or support. The total number of stars displayed on a
repository’s profile serves as an indicator of its popularity.

2.4 Software Metrics
Software metrics are mechanisms used to assess attributes

of a software process, product, or project [7]. They form an
integral part of the software measurement process, which
involves obtaining metrics from software source code by as-
sociating a characteristic with a value [19].

In this work, we employ software source code analysis to
derive two specific metrics: frequency and coverage. To un-
derstand the concept of frequency, it is important to intro-
duce the metric known as Lines of Code (LOC).

Lines of Code (LOC) or Source Lines of Code (SLOC)
quantifies the number of source code lines in a software ar-
tifact [23]. KLOC is a variation of this metric, where K
represents kilo, indicating that the scale is in thousands [24].

Frequency is employed in various contexts, depending on
the concept being studied. For example, Rahmani and Khaz-
anchi [26] utilize defect density as a measure calculated by
dividing the total number of defects by the size of the soft-
ware. In this work, we employ the term frequency with sim-
ilar connotations. It is used to measure the usage frequency
of framework commands. We assess individual commands as
well as groups of commands, calculating their frequency by
dividing the number of times they are used by the project’s
KLOC size.

Another significant metric employed in this work is cov-
erage. The concept of coverage can be applied in different
scenarios. In our study, we employ coverage to determine
the number of commands utilized by a project and the pro-
portion they represent out of the total. For instance, if a
framework consists of ten commands and a project employs
five of them, the coverage is 50%, calculated by dividing 5
by 10.

2.5 Related Work
This section presents a review of several studies that focus

on the identification and assessment of developer expertise in
various domains, including open-source software, recruiting,
task allocation, and software engineering practices. Each
study employs different techniques, tools, or algorithms and
utilizes diverse types of input data and attributes to achieve
its objectives.

The related studies that are more similar to the current
study are the ones that primarily focus on identifying the
level of framework usage in specific projects, as well as iden-
tifying library experts or developer expertise. These studies
aim to obtain such information to assist in identifying pro-
ficient developers for specific scenarios.

[12] analyze keywords present in textual commit messages
and associate them with developers, examining their fre-
quency of occurrence. This approach categorizes developer
expertise into unique terms (used exclusively by a specific
developer), common terms (used by a group of developers),
and frequent terms (used by multiple developers). The study
captures expertise related to high-level packages, such as
Spring Boot.

[21] utilize code metrics, including the number of commits,
imports, and lines of code, to identify experts in a Java
library. In another work, [20] present a tool based on this
technique.

[17] search for library experts by examining repositories
that employ a specific library, using metrics such as the
number of commits. [31] analyze usage metrics of three
Java libraries in developer commits, considering factors such

Revista de Sistemas e Computação, Salvador, v. 13, n. 2, p. 4-16, maio/ago. 2023 
https://revistas.unifacs.br/index.php/rsc

6



as the number of library imports and the number of lines
of code related to the library. [15] employ Natural Lan-
guage Processing techniques to identify software expertise
from GitHub repositories. They analyze the terms present
in code changes obtained from the repository history.

[34] search for library experts in Java projects by examin-
ing the repository history to determine the number of library
features used by a developer, comparing it to the total num-
ber of features exported by the library. Finally, [35] propose
an approach to specify skills using a specific language and
then extract those specified skills from source code reposi-
tories.

[9] utilizes source code from platforms, like GHTorrent,
and focuses on API usage as a key attribute. It compares
new APIs with those used in the past from the data to
identify experts in software libraries and frameworks among
GitHub users. The study’s objective is to facilitate the
matching of developers with suitable open-source projects.

[18] leverages syntax patterns extracted from Python code
on GitHub. The study aims to divide developers into novice
and expert categories by creating a baseline and compar-
ing developers’ utilization of syntax patterns. It has im-
plications for the recruiting process, providing insights into
developer expertise based on their code’s syntactical char-
acteristics.

[3] focuses on identifying developer expertise through met-
rics derived from source code, including commit activity, files
committed, and lines of code changed. The study compares
the data obtained with StackOverflow answers, providing in-
sights into the expertise of developers based on their commit
activity in GitHub.

[6] employs machine learning techniques to calculate ex-
pertise over time. The study considers the frequency of
changes to different artifacts (files or methods) in source
code and analyzes the spread of changes and the time period
when they were performed. The research aims to provide a
comprehensive approach to identify developer expertise be-
yond just the total number of edits.

The reviewed studies have demonstrated various approa-
ches to identify and assess developer expertise in different
domains. A common trend observed among these studies
is the utilization of source code identifiers as a valuable re-
source for detecting and understanding developer expertise.
Techniques such as code quality analysis and static analysis
have been employed to leverage the information present in
source code to determine developer expertise.

The utilization of source code identifiers, combined with
other data sources like bug reports, project information,
and developer history, has enabled researchers to develop
techniques for tasks such as matching developers with open-
source projects, dividing developers into novice and expert
categories, identifying technical roles, recommending devel-
opers for specific tasks, and triaging change requests.

Many existing studies focus on specific projects, limit-
ing their applicability in different scenarios. Few studies
measure developer expertise in specific technologies, such as
JavaScript frameworks. To address these limitations, our
work aims to develop a customizable tool that analyzes de-
veloper expertise in specific frameworks or libraries.

3. FWKANALYZER: A TOOL FOR DETE-
CTING FRAMEWORKS USAGE LEVEL

To address the problem discussed in the previous sections,
this work proposes a tool called FwkAnalyzer, which ana-
lyzes the framework usage of developers. Figure 1 provides a
high-level overview of the integration of a framework into the
tool (left lane) and the analysis of developers (right lane).

The tool requires a pre-generated framework benchmark
as a reference to determine the level of framework usage.
This benchmark is generated by analyzing GitHub reposito-
ries that utilize the framework. To integrate the framework
into the tool, a list of commands that characterize the frame-
work needs to be provided. During the analysis, metrics such
as the count usage and frequency of these commands are ex-
tracted from the users’ production history, obtained from
their commits.

The benchmark needs to be constructed initially to en-
able the analysis of developers. However, it does not need
to be built for every developer analysis. FwkAnalyzer can
generate and store the necessary information to expedite the
developer analysis process.

Using the generated benchmark, the tool can compare a
specific developer’s framework usage with the benchmark,
providing insights into the developer’s framework knowl-
edge based on their production. The tool consists of two
projects: one for generating the benchmark and performing
the developer analysis, and the other for interacting with
users through a web browser. Both projects were developed
using the JavaScript programming language, with the first
project utilizing Node.js and the second project utilizing Re-
act. Both projects are available under the MIT license, and
the respective links are provided below:

• https://github.com/ghdeassis/fwkanalyzer-api

• https://github.com/ghdeassis/fwkanalyzer-web

In the following sections, we will delve into the details of
benchmark construction and the developer analysis process.

3.1 Benchmark construction
Before analyzing a developer’s expertise in a framework,

FwkAnalyzer constructs a benchmark of the framework’s us-
age to quantify its usage by other developers. This bench-
mark is created by analyzing other projects that utilize the
same framework and extracting the framework-related con-
tributions made by developers. Figure 2 provides a detailed
overview of the benchmark construction process, with the
following paragraphs explaining each step indicated in the
figure.

Step 1 is initiated by the user who wishes to integrate a
new framework into the tool. To begin the benchmark con-
struction, FwkAnalyzer requires the following information:

• Framework and programming language name

• The commands list that the user wants to build the
analysis

• File extensions that will be analyzed

• A file name to check if a project really uses the frame-
work

Entering a list of framework commands provides flexibility
to the evaluation, allowing for a focused analysis by exclud-
ing irrelevant commands based on the user’s context.

Revista de Sistemas e Computação, Salvador, v. 13, n. 2, p. 4-16, maio/ago. 2023 
https://revistas.unifacs.br/index.php/rsc

7

https://github.com/ghdeassis/fwkanalyzer-api
https://github.com/ghdeassis/fwkanalyzer-web


Figure 1: FwkAnalyzer Process

In step 2, FwkAnalyzer retrieves a list of 50 repositories
from the GitHub public API by searching for repositories
based on the framework and programming language name.
Additionally, repositories are filtered based on the number

Figure 2: Benchmark Construction Process

of stars they have. The number of stars serves as a pop-
ularity metric on GitHub, with each user able to star a
repository to indicate their interest or support. To avoid
including insignificant or excessively large projects, reposi-
tories with fewer than 50 stars or more than 1000 stars are
excluded. For example, to integrate the React library, which
uses JavaScript as the programming language, the search
query would be: stars:50..1000 react language:JavaScript.

According to [22], the popularity of software components,
as perceived by developers, can serve as an indicator of soft-
ware quality. In this regard, the number of stars on GitHub
can be a helpful metric for selecting projects with a signifi-
cant level of quality.

In step 3, FwkAnalyzer clones the master branch of the
selected repositories and stores them in a local directory
structure along with the tool. The cloning process retrieves

Revista de Sistemas e Computação, Salvador, v. 13, n. 2, p. 4-16, maio/ago. 2023 
https://revistas.unifacs.br/index.php/rsc

8



only the Git information without downloading the reposi-
tory files, enabling access to the project’s change history,
including the modified code and the corresponding authors.
This decision optimizes the integration time for new frame-
works, as the tool only needs to analyze code changes and
authorship information, not every single file.

After cloning each project, step 4 verifies if the repository
indeed uses the desired framework. This confirmation step
is necessary because the GitHub search alone does not guar-
antee that a repository utilizes the framework. To perform
this check, FwkAnalyzer searches for the specified file set
from step 1 within the repository and checks if the frame-
work name is present. For instance, to verify if a JavaScript
project uses the React library, the tool checks if the project’s
configuration file, such as package.json, contains the name
react.

Once the successful verifications in step 4 are completed,
FwkAnalyzer proceeds to step 5, which involves analyzing
the repository’s history. Initially, FwkAnalyzer traverses
the Git commit history, focusing solely on line additions
in files with the defined extensions, disregarding deletions
and untouched lines of code. In these selected lines, the tool
searches for framework commands. When a command is
found, the tool increments the usage count of that command
for the specific developer, as what matters is the command
usage by the developer rather than by the entire reposi-
tory. Additionally, the number of changed lines of code is
stored for each developer, specifically in files with the de-
sired extensions. This information is accumulated as it will
be important for generating metrics.

After completing this initial analysis, the tool obtains us-
age metrics for the framework commands specific to each
developer. However, the analysis is not yet complete, as
the user may have made contributions to other repositories
that utilize the same framework. To identify these potential
contributions, step 6 involves searching the user’s commits
using their email with the following query string: author-
email:example@email.com. This search is limited to 1000
items due to GitHub constraints.

By the end of step 6, FwkAnalyzer has a list of repositories
to which the user has made contributions and that utilize the
framework. The verification process in step 4 is repeated for
these repositories. In step 7, the tool iterates over this list
and performs a similar analysis as in step 5, focusing solely
on the user’s contributions. The findings from this step are
added to the initial user information obtained earlier.

At this stage, the initial number of 50 repositories has
increased due to including the user’s contributions in other
repositories that use the same framework. Section 4 pro-
vides details on the final number of analyzed developers and
repositories for the React library.

Upon completing the above process, step 8 involves Fwk-
Analyzer generating metrics using the obtained information.
For example, the tool has the usage quantity of each com-
mand and the number of changed lines of code for each de-
veloper. With this information, two metrics are calculated:
usage frequency and usage coverage for the framework com-
mands.

• Usage frequency: the usage frequency of a command
is calculated by dividing the number of times the com-
mand appears in the code by the number of lines of
code (LOC). The result is then multiplied by 1000 to
normalize the metric to 1000 lines of code (KLOC).

This metric indicates the frequency of command usage
by the developer. The equation below illustrates this
calculation:

UsageFrequency =
CommandsOccurrence

LOC ∗ 1000
For example, if the usage frequency of a command is
15, it means that the command is used 15 times per
1000 lines of code.

• Usage coverage: the usage coverage of the commands
is calculated by dividing the number of commands used
by the developer by the total number of commands
available. This metric represents the percentage of
commands utilized by the developer. The equation
below illustrates this calculation:

UsageCoverage =
CommandsOccurrence

TotalCommands

For instance, if a framework has 10 commands and a
developer uses 4 of them, the coverage is 0.4, which is
equivalent to 40% coverage.

Usage frequency and usage coverage are calculated for
each developer. At the end of the analysis, FwkAnalyzer
generates the mean general coverage, mean general frequency,
and frequency for each command.

• Mean general coverage: the mean general coverage
is calculated by dividing the sum of the coverage for
each developer by the total number of developers. The
equation below illustrates this calculation:

MeanGeneralCoverage =
DevelopersCoverageSum

TotalNumberDevelopers

• Mean general frequency: the mean general frequency
is calculated by dividing the sum of all command us-
ages by the total LOC and then multiplying by 1000.
The equation below illustrates this calculation:

MeanGeneralFrequency =
CommandsUsageSum

TotalLOC ∗ 1000

• Command mean frequency: the mean frequency for
each command is calculated in the same manner, but
considering only the number of times that command is
used. The equation below illustrates this calculation:

CommandMeanFrequency =
CommandUsageSum

TotalLOC ∗ 1000

These metrics will be useful during the developer analysis,
as they enable a comparison between a specific developer
and the benchmark. This comparison allows us to determine
whether the developer’s framework usage is above or below
the benchmark.

The generated information is saved in a JSON file and
will be referenced during the analysis of specific develop-
ers, where a comparison will be made with the previously
constructed benchmark.

It is important to note that the GitHub public API has
rate-limiting policies that must be followed to prevent being
blocked. Users have the option to set up an access API key
within GitHub and configure it in FwkAnalyzer to obtain
permission for a higher number of requests. Failure to do so
may result in slower processing speeds. The duration of the

Revista de Sistemas e Computação, Salvador, v. 13, n. 2, p. 4-16, maio/ago. 2023 
https://revistas.unifacs.br/index.php/rsc

9



benchmark construction process depends on the initial num-
ber of repositories, as simultaneous requests to the GitHub
API are limited. Therefore, the process may take some time.
Section 4 provides more detailed information regarding the
time spent on this process.

The following algorithm summarizes the steps described
in the preceding paragraphs:

Algorithm 1 Benchmark Construction Process

Require: Framework Information
ReposList← GetReposListFromGitHub()
for R of ReposList do Clone(R)

if RepositoryUsesFramework(R) is true then
UsersList← GetUsersList(R)

end if
end for
for U of UsersList do

UserReposList← SearchUserContributions(U)
for R of UsersReposList do

AnalyzeUserCommitHistory(R, U)
end for

end for
FrameworkBenchmark ← GenerateMetrics()

3.2 Developer analysis
The analysis of a specific developer is conducted using a

similar process to benchmark construction, but focusing on
a single developer. Figure 3 illustrates the steps involved in
analyzing a developer.

Step 1 begins in the FwkAnalyzer web interface, where
the user can select the framework to be analyzed and enter
the developer’s email, which will be used to retrieve the nec-
essary information. The framework list presented in the in-
terface includes only the frameworks that have already been
integrated into the platform.

In steps 2 and 3, FwkAnalyzer performs a process sim-
ilar to steps 5 and 6 in benchmark construction. In step
2, a search is conducted on GitHub to identify the devel-
oper’s commits, creating a list of repositories to which the
user has made contributions and that utilize the frame-
work being analyzed. The GitHub API search query takes
into account the developer’s email, for example: author-
email:example@email.com. It is important to note that the
analysis is limited to contributions made in public reposito-
ries, as access to private repositories is restricted.

In step 3, FwkAnalyzer analyzes the commit history of
each repository in the list, focusing specifically on the user’s
contributions. During this analysis, the tool counts the oc-
currences of each command in the line additions of files with
the specified extensions and records the number of lines of
code that have been modified in those files.

In step 4, FwkAnalyzer generates the same metrics de-
scribed in step 8 of benchmark construction. Once the anal-
ysis is complete, the tool provides the frequency of each com-
mand, the general frequency, and the command coverage for
the developer.

In step 5, FwkAnalyzer presents a dashboard in the web
interface, where the generated metrics are displayed along-
side the benchmark metrics. This allows for a comparative
analysis of the developer’s code based on the obtained re-
sults. For instance, it is possible to compare the developer’s
framework usage with the average benchmark usage. Addi-

Figure 3: Developer Analysis

tionally, each command can be analyzed individually.
The following algorithm summarizes the steps described

in the preceding paragraphs:

Algorithm 2 Developer Analysis

Require: Developer Information
UserRepositoriesList← SearchUserContributions()
for R of UsersRepositoriesList do

AnalyzeUserCommitHistory(R, U)
end for
UserMetrics← GenerateUserMetrics()
CreateDashboard()

The generated metrics are compared to those of the bench-
mark to assess the developer’s framework usage. Thus, at
this moment, it is possible to analyze the developer frame-
work usage. For example, if a developer’s command fre-
quency metric is higher than the corresponding metric in
the benchmark, it indicates that the developer has used that
command more frequently than the benchmark, proportion-
ally to the LOC. Conversely, if the metric is lower, it means
that the developer has used that command proportionally
less than the benchmark.

Similarly, the general frequency metric follows the same

Revista de Sistemas e Computação, Salvador, v. 13, n. 2, p. 4-16, maio/ago. 2023 
https://revistas.unifacs.br/index.php/rsc

10



logic but considers all the commands together. Thus, if a
developer’s usage of one command exceeds the mean while
their usage of another command falls below the mean, the
general frequency metric may still remain around the mean
due to the compensatory effect.

The command coverage metric assesses the variety of com-
mands used by the developer and is independent of fre-
quency. For example, if a developer heavily relies on only a
few commands, their coverage will be low. Conversely, if a
developer uses a wide range of commands, even if it is only
once each, their coverage will be high.

The results page presents these metrics in the form of
charts and tables, enabling the user to draw conclusions
about the developer’s framework usage and gain insights into
their depth of knowledge and experience with the frame-
work. The following section discusses the insights derived
from the graphs using a real example.

4. DEMONSTRATION
This section aims to demonstrate the usage of FwkAna-

lyzer with real information retrieved from GitHub. We have
chosen the React library as an example for constructing the
benchmark and conducting individual analyses. React is a
JavaScript library used for building user interfaces [27].

As explained in previous sections, FwkAnalyzer requires
a list of commands to generate the benchmark. The inte-
gration process allows the user to select the commands for
analysis. It is not necessary to include all of the frame-
work’s commands in the list. The selection can be tailored
to the user’s specific context. For this demonstration, we
have selected the following list of commands from the official
React documentation: render, setState, Component, Frag-
ment, componentDidMount, componentDidUpdate, compo-
nentWillUnmount, useEffect, useState, useRef and useCon-
text.

The duration of the integration process depends on the
number of repositories used for analysis. To illustrate this
difference, we performed the integration process starting
with ten and fifty repositories. For each developer found
in the initial list, the tool searches for their contributions
using the framework in other repositories, resulting in an
increasing number of repositories analyzed.

Using ten repositories, the total time spent was 1 hour and
51 minutes, analyzing 46 users across a total of 388 reposito-
ries. When starting with fifty repositories, the process took
19 hours and 56 minutes, analyzing 319 users across 4238
repositories. Both cases were run on a MacBook Pro 2019
with a 2.6 GHz 6-Core Intel Core i7 processor and 16GB of
RAM. The main speed limitation in this process is the inter-
action with GitHub, as its rate limit policy allows for 5000
requests per hour (https://docs.github.com/en/devel
opers/apps/building-github-apps/rate-limits-for-g

ithub-apps) and also blocks multiple sequential concurrent
requests. The initial number of repositories can be adjusted
by the person running the integration process.

For this demonstration, we will use the larger dataset de-
scribed in the previous paragraph. The average coverage is
51.13%, and the average frequency is 16.73 times per kLOC.
Table 1 presents the average usage and frequency for each
command.

For the developer analysis, we have used the author’s
email, which is x@gmail.com. Since we have set up the
GitHub API Key for this email within the tool, FwkAna-

Table 1: React Commands Metrics
Command Average Average

Usage Frequency
render 239.93 7.81
setState 60.89 2.53

Component 318.58 7.92
Fragment 22.52 0.59

componentDidMount 19.88 0.52
componentDidUpdate 15.68 0.24

componentWillUnmount 14.65 0.28
useEffect 13.46 0.75
useState 23.09 1.12
useRef 7.10 0.32

useContext 6.52 0.14

lyzer is able to access private repositories associated with
this email. As a result, the following demonstration in-
cludes more information than what is available on the public
GitHub page for this user.

To initiate the analysis, we selected React on the initial
page, as shown in Figure 4. We then provided the user’s
email and clicked on the analyze button. The analysis pro-
cess for this user was completed in 1 minute and 49 seconds.

Figure 4: Initial Page

In the following paragraphs, we will analyze the dashboard
generated by the tool, which is divided into figures 5, 6, 7,
8, 9, and 10. These figures showcase the insights that can
be obtained from the analyzed user’s data.

Figure 5 displays two graphs that provide information
about command usage. The left graph shows the devel-
oper’s coverage, indicating how many commands the user
has used at least once out of the total number of commands
analyzed. The right graph presents the general informa-
tion of the framework obtained from the benchmark, show-
ing the number of commands analyzed. By comparing the
user’s coverage with the general coverage, users can deter-
mine whether the specific developer has a greater coverage
than the general.

Figure 6 compares the developer’s command frequency
with the general frequency of the framework obtained from
the benchmark. The frequency is represented in terms of
commands used per 1000 lines of code (kLOC). If the de-
veloper’s frequency is greater than the general frequency, it
indicates that the repository uses more commands per line
of code compared to the general benchmark.

Figure 7 provides an overview of the command usage. It
briefly shows the number of commands that have a higher

Revista de Sistemas e Computação, Salvador, v. 13, n. 2, p. 4-16, maio/ago. 2023 
https://revistas.unifacs.br/index.php/rsc

11

https://docs.github.com/en/developers/apps/building-github-apps/rate-limits-for-github-apps
https://docs.github.com/en/developers/apps/building-github-apps/rate-limits-for-github-apps
https://docs.github.com/en/developers/apps/building-github-apps/rate-limits-for-github-apps


Figure 5: Commands Usage

Figure 6: Frequency

frequency and usage than the general benchmark.

Figure 7: Commands Overview

Figures 8 and 9 provide detailed graphs for each command
of the framework. Each command is analyzed individually,
presenting the developer’s frequency and usage compared to
the general framework frequency. These graphs allow for a
more detailed analysis of the developer’s usage of each spe-
cific command and highlight any deviations from the general
benchmark metrics.

Figure 10 illustrates the developer’s framework usage over
the years. It displays the number of commands from the
command list that the developer used in each year, providing
insights into the developer’s usage patterns over time.

Analyzing these graphs, we can derive several insights
about the developer’s framework usage compared to the
benchmark. For example:

• The developer uses 72.73% of the framework commands,
while the general average is 51.13%. This indicates
that the developer uses more commands than the bench-
mark (Figure 5).

• The developer has a frequency of 15.70, meaning they
use 15.70 commands per 1000 lines of code. The gen-
eral mean is 22.22, indicating that the developer has a
lower frequency than the general benchmark. In other
words, they use fewer commands per line of code than
the average (Figure 6).

• For each command, it is compared developer’s com-
mands frequency and usage with the general mean. In
the command overview (Figure 7), it is observed that
the developer uses 8 out of the 11 analyzed commands.
Among these 8 commands, 3 have a higher frequency
than the general benchmark, and 2 have higher us-
age than the general benchmark. Figure 8 and 9 show
the generated graphs for each command, comparing its
frequency and usage by the developer with the general
mean.

• The graph in Figure 10 shows the developer’s frame-
work usage over the years, providing insights into the
timeline of their framework knowledge, if it has been
used consistently through the years, or if it was used
more in a specific period. It indicates that the devel-
oper started using 183 React commands in 2022, with
no records before that year.

5. CONCLUSION
The realm of programming knowledge extends far beyond

being familiar with a specific framework. However, many job
advertisements emphasize the requirement for expertise in
particular frameworks or libraries. Assessing a developer’s
proficiency in a framework poses a challenge since develop-
ers typically employ only a subset of a framework’s features
in their work, and they may not need to utilize the entire
framework.

This paper presents FwkAnalyzer, a tool designed to an-
alyze a developer’s expertise in a specific framework. To
accomplish this objective, the framework must first be inte-
grated into the tool. Integration is achieved by examining
GitHub projects that employ the framework and identify-
ing a list of relevant commands. Subsequently, metrics such
as frequency and usage are generated both in a comprehen-
sive manner and specific to each command. This data al-
lows for a comparison between a developer’s contributions to
open-source projects on GitHub and the framework’s met-
rics, thereby providing insights into the developer’s frame-
work usage.

The core idea behind FwkAnalyzer is twofold. Firstly, in
order to assess a developer’s knowledge of a framework, a
benchmark is necessary for comparison. Without a bench-
mark derived from a significant number of developers who
employ the same technology, it is challenging to establish
an exact threshold to measure such knowledge. Secondly,
FwkAnalyzer recognizes that the understanding of frame-
work usage can vary across different contexts. Therefore,

Revista de Sistemas e Computação, Salvador, v. 13, n. 2, p. 4-16, maio/ago. 2023 
https://revistas.unifacs.br/index.php/rsc

12



Figure 8: Commands’ Analysis Part 1

Revista de Sistemas e Computação, Salvador, v. 13, n. 2, p. 4-16, maio/ago. 2023 
https://revistas.unifacs.br/index.php/rsc

13



Figure 9: Commands’ Analysis Part 2

Figure 10: Usage in Years

Revista de Sistemas e Computação, Salvador, v. 13, n. 2, p. 4-16, maio/ago. 2023 
https://revistas.unifacs.br/index.php/rsc

14



the tool allows users to select the framework commands that
are relevant within their specific context, thus constructing
a benchmark tailored to their requirements.

By employing these concepts, FwkAnalyzer enables users
to determine the pertinent framework commands for their
specific context and construct a benchmark that reflects
their needs. Once the benchmark is established, FwkAn-
alyzer facilitates a comparative analysis between a specific
developer and the benchmark, shedding light on the devel-
oper’s expertise in the framework within their particular
context.

During the analysis of a specific developer, FwkAnalyzer
generates graphs that provide comparisons of command us-
age, both in terms of individual commands and in a more
general sense. These graphs offer valuable insights into the
developer’s expertise in the framework within the given con-
text. Such insights can prove valuable during developer
recruitment processes or when making decisions regarding
project allocation.

5.1 Research Limitations
This research is subject to certain limitations in terms of

data collection and metrics generation. With regard to data
collection for benchmark creation, the public GitHub API
imposes restrictions that limit the tool’s ability to retrieve
a large amount of information simultaneously. It allows for
a maximum of 5000 requests per hour and blocks sequential
and concurrent requests. Consequently, we had to set a
reasonable number of repositories for the initial search to
avoid excessively long benchmark construction times.

As a result of this limitation, the group of repositories an-
alyzed may not provide a comprehensive representation of
the entire context. Increasing the number of analyzed users
could contribute to a more realistic benchmark; however,
it would also extend the time required for benchmark con-
struction. Additionally, the restriction applied to the initial
search, where repositories with 50 to 1000 stars are consid-
ered, may not always yield the most appropriate group for
finding developers.

Regarding metrics generation, there is a possibility of in-
correct identification of framework command usage in cer-
tain situations, although it is not highly likely. This poten-
tial inaccuracy arises because the tool searches for command
usage based on text occurrences, rather than performing a
grammatical check. Therefore, if a command appears within
a comment in the code, the tool may mistakenly count it as
usage. Furthermore, the analysis is limited to the reposi-
tories’ master branch and does not consider other branches
that could contain valuable information.

Another limitation related to metrics generation is how
FwkAnalyzer determines whether a repository uses the de-
sired framework. The current approach does not provide
a complete guarantee of framework usage within a project.
Similarly, the tool does not account for specific framework
versions, as it does not currently check this information and
analyzes all versions together.

Finally, it is important to note that FwkAnalyzer aims to
assist in assessing developer expertise in a specific framework
or library, rather than providing a definitive measure of a
developer’s proficiency. Consequently, there are limitations
that the tool cannot address. For instance, situations where
a developer exclusively contributes to private repositories,
which are inaccessible to the tool, pose a challenge.

5.2 Future work
Future work can address some of the limitations identi-

fied in this research. One potential improvement is to en-
hance the analysis process by incorporating grammar checks
instead of relying solely on text matching for identifying
framework commands. This could improve the accuracy of
command usage identification. Additionally, the tool can be
expanded to include additional metrics that provide further
insights into developer expertise.

Another aspect for future work is the analysis of all project
branches, rather than limiting the analysis to the master
branch. This would allow for a more comprehensive under-
standing of framework usage within a project. Furthermore,
considering framework versioning could provide valuable in-
sights into how developers adapt to different versions and
utilize specific features.

To optimize the integration process, the tool can be en-
hanced to support multiple configured GitHub keys, en-
abling concurrent requests and speeding up the benchmark
construction.

Future work can involve testing Machine Learning algo-
rithms using the data obtained from FwkAnalyzer to de-
velop a model that can more accurately assess a developer’s
expertise in a specific framework.

Lastly, future work can include conducting surveys with
developers and managers from real companies to gather feed-
back on the tool’s applicability and identify areas for im-
provement. This feedback can provide valuable insights into
the tool’s effectiveness and help shape its future develop-
ment.

6. REFERENCES
[1] S. Baltes and S. Diehl. Towards a theory of software

development expertise. In Proceedings of the 2018 26th
acm joint meeting on european software engineering
conference and symposium on the foundations of
software engineering, pages 187–200, 2018.

[2] J. Bedard and M. T. Chi. Expertise. Current
directions in psychological science, 1(4):135–139, 1992.

[3] E. Constantinou and G. M. Kapitsaki. Identifying
developers’ expertise in social coding platforms. In
2016 42th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA),
pages 63–67. IEEE, 2016.

[4] V. Cosentino, J. L. C. Izquierdo, and J. Cabot. A
systematic mapping study of software development
with github. IEEE Access, 5:7173–7192, 2017.

[5] N. Cross. Expertise in design: an overview. Design
studies, 25(5):427–441, 2004.

[6] J. R. da Silva, E. Clua, L. Murta, and A. Sarma. Niche
vs. breadth: Calculating expertise over time through a
fine-grained analysis. In 2015 IEEE 22nd International
Conference on Software Analysis, Evolution, and
Reengineering (SANER), pages 409–418. IEEE, 2015.

[7] M. K. Daskalantonakis. A practical view of software
measurement and implementation experiences within
motorola. IEEE Transactions on Software
Engineering, 18(11):998, 1992.

[8] T. H. Davenport, L. Prusak, et al. Working
knowledge: How organizations manage what they
know. Harvard Business Press, 1998.

[9] T. Dey, A. Karnauch, and A. Mockus. Representation

Revista de Sistemas e Computação, Salvador, v. 13, n. 2, p. 4-16, maio/ago. 2023 
https://revistas.unifacs.br/index.php/rsc

15



of developer expertise in open source software. In 2021
IEEE/ACM 43rd International Conference on
Software Engineering (ICSE), pages 995–1007. IEEE,
2021.

[10] N. M. Edwin. Software frameworks, architectural and
design patterns. Journal of Software Engineering and
Applications, 2014, 2014.

[11] K. A. Ericsson and T. J. Towne. Expertise. WIREs
Cognitive Science, 2010.

[12] M. Hammad, H. Hijazi, M. Hammad, and A. F.
Otoom. Mining expertise of developers from software
repositories. International Journal of Computer
Applications in Technology, 62(3):227–239, 2020.

[13] J. Jacoby, T. Troutman, A. Kuss, and D. Mazursky.
Experience and expertise in complex decision making.
ACR North American Advances, 1986.

[14] F. Javeed, A. Siddique, A. Munir, B. Shehzad, and
M. I. Lali. Discovering software developer’s coding
expertise through deep learning. IET Software,
14(3):213–220, 2020.

[15] S. Kourtzanidis, A. Chatzigeorgiou, and
A. Ampatzoglou. Reposkillminer: identifying software
expertise from github repositories using natural
language processing. In 2020 35th IEEE/ACM
International Conference on Automated Software
Engineering (ASE), pages 1353–1357. IEEE, 2020.

[16] Merriam-Webster. Expert definition, 2021. Accessed:
2021-10-24.

[17] J. E. Montandon, L. L. Silva, and M. T. Valente.
Identifying experts in software libraries and
frameworks among github users. In 2019 IEEE/ACM
16th International Conference on Mining Software
Repositories (MSR), pages 276–287. IEEE, 2019.

[18] A. Moradi Dakhel, M. C. Desmarais, and F. Khomh.
Assessing developer expertise from the statistical
distribution of programming syntax patterns. In
Evaluation and Assessment in Software Engineering,
pages 90–99. Association for Computing Machinery,
2021.

[19] A. S. Nuñez-Varela, H. G. Pérez-Gonzalez, F. E.
Mart́ınez-Perez, and C. Soubervielle-Montalvo. Source
code metrics: A systematic mapping study. Journal of
Systems and Software, 128:164–197, 2017.

[20] J. Oliveira, D. Pinheiro, and E. Figueiredo. Jexpert: A
tool for library expert identification. In Proceedings of
the 34th Brazilian Symposium on Software
Engineering, pages 386–392, 2020.

[21] J. Oliveira, M. Viggiato, and E. Figueiredo. How well
do you know this library? mining experts from source
code analysis. In Proceedings of the XVIII Brazilian
Symposium on Software Quality, pages 49–58, 2019.

[22] M. Papamichail, T. Diamantopoulos, and
A. Symeonidis. User-perceived source code quality
estimation based on static analysis metrics. In 2016
IEEE International Conference on Software Quality,
Reliability and Security (QRS), pages 100–107. IEEE,
2016.

[23] B. Parareda and M. Pizka. Measuring productivity
using the infamous lines of code metric. In Proceedings
of SPACE 2007 Workshop, Nagoya, Japan. Citeseer,
2007.

[24] R. E. Park. Software size measurement: A framework

for counting source statements. Technical report,
Carnegie-Mellon Univ Pittsburgh PA Software
Engineering Inst, 1992.

[25] R. Prikladnicki and J. L. N. Audy.
Interdisciplinaridade na engenharia de software.
Scientia, 19(2):117–127, 2008.

[26] C. Rahmani and D. Khazanchi. A study on defect
density of open source software. In 2010 IEEE/ACIS
9th International Conference on Computer and
Information Science, pages 679–683. IEEE, 2010.

[27] React. React, 2022. Accessed: 2022-08-14.

[28] D. Riehle. Framework design: A role modeling
approach. PhD thesis, ETH Zurich, 2000.

[29] M. P. Robillard, W. Maalej, R. J. Walker, and
T. Zimmermann. Recommendation Systems in
Software Engineering. Springer Publishing Company,
Incorporated, 2014.

[30] N. B. Ruparelia. The history of version control. ACM
SIGSOFT Software Engineering Notes, 35(1):5–9,
2010.

[31] A. Santos, M. Souza, J. Oliveira, and E. Figueiredo.
Mining software repositories to identify library
experts. In Proceedings of the VII Brazilian
Symposium on Software Components, Architectures,
and Reuse, pages 83–91, 2018.

[32] A. Sarma, X. Chen, S. Kuttal, L. Dabbish, and
Z. Wang. Hiring in the global stage: Profiles of online
contributions. In 2016 IEEE 11th International
Conference on Global Software Engineering (ICGSE),
pages 1–10. IEEE, 2016.

[33] Techopedia. Software library, 2016. Accessed:
2022-09-27.

[34] C. Teyton, J.-R. Falleri, F. Morandat, and X. Blanc.
Find your library experts. In 2013 20th Working
Conference on Reverse Engineering (WCRE), pages
202–211. IEEE, 2013.

[35] C. Teyton, M. Palyart, J.-R. Falleri, F. Morandat, and
X. Blanc. Automatic extraction of developer expertise.
In Proceedings of the 18th International Conference on
Evaluation and Assessment in Software Engineering,
pages 1–10, 2014.

[36] J. Yan, H. Sun, X. Wang, X. Liu, and X. Song.
Profiling developer expertise across software
communities with heterogeneous information network
analysis. In Proceedings of the Tenth Asia-Pacific
Symposium on Internetware, pages 1–9, 2018.

[37] N. N. Zolkifli, A. Ngah, and A. Deraman. Version
control system: A review. Procedia Computer Science,
135:408–415, 2018.

Revista de Sistemas e Computação, Salvador, v. 13, n. 2, p. 4-16, maio/ago. 2023 
https://revistas.unifacs.br/index.php/rsc

16


	Introduction
	Background
	Developer Expertise
	Framework
	Version Control Systems
	Software Metrics
	Related Work

	FwkAnalyzer: A Tool for Detecting Frameworks Usage Level
	Benchmark construction
	Developer analysis

	Demonstration
	Conclusion
	Research Limitations
	Future work

	References



