
Using a First-Order-Based Language to Automatically
Synthesize Valid Arguments of Propositional Calculus

Elthon Oliveira
Núcleo de Ciências Exatas

Campus Arapiraca
Universidade Federal de

Alagoas
elthon@arapiraca.ufalbr

Filipe Oliveira
Núcleo de Ciências Exatas

Campus Arapiraca
Universidade Federal de

Alagoas
filipe.oliveira@arapiraca.ufal.br

Bolsista Pibic/CNPq e Fapeal

Rafaella Rosendo
Núcleo de Ciências Exatas

Campus Arapiraca
Universidade Federal de

Alagoas
rafaella.rosendo@arapiraca.ufal.br

Bolsista Pibic/CNPq

ABSTRACT
The elaboration of problems with common specific char-

acteristics is considered a tedious task on the part of the
teacher. In the context of Logic discipline, this article presents
an approach designed for generating propositional calculus
formulas and valid arguments. Such a process occurs ac-
cording to parameters customized by the user. This work
adapts the technique of Sketch Generation from Program
Synthesis, which is used in conjunction with constraint pro-
gramming in the Alloy modeling language to make formulas
and arguments generation possible. Resources capable of
generating elements based on parameters supplied by the
user were developed in the form of a mobile app. Such an
app hides from the user all the complexity of the process.

CCS Concepts
•Theory of computation → Logic; •Applied computing →

Education;

Keywords
Propositional Calculus; Sketch; Valid Arguments

1. INTRODUCTION
Program Synthesis [7] is the act of automatically finding

a program in a specific programming language. This search
must satisfy the userÂ intention which is described as a spec-
ification. This problem has been considered the Holy Grail
of Computer Science. Some researchers considered Program
Synthesis one of the main problems in programming theory
[13]. In this paper, we use and adapt the Program Sketching
approach, along with constraint programming, to synthesize
valid Propositional Calculus formulas and arguments. These
techniques are arranged through the written specifications,
which have the purpose of being used in the Alloy modeling

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

language.
In the context of subject formal teaching, creating new

problems to be solved by the students is a habitual task of
the professor. Considering that these problems need spe-
cific solving characteristics, as a specific level of difficulty
or that these problems need to involve certain concepts, the
task can be deeply tedious. A solution for that would be to
automatize the problem generation.

The approach presented here seeks to eliminate manu-
ally generating valid arguments. Moreover, this approach
provides a tool for the students to practice the subject con-
cepts and for the professors, which will have an inexhaustible
source of practice material for their students. The tool de-
veloped with this approach will be capable of preventing
fraud [11] in the classroom or MOOCs (Massive Open On-
line Courses), since each student can receive a different set
of problems but with the same difficulty level.

The resources developed in this work aim for the auto-
matic generation of arguments and formulas of Propositional
Calculus. Such a generation occurs based on the parameters
provided by the user. These parameters are moved through
requisitions made in an API, developed to establish com-
munication between the mobile tool and the server where
Alloy specifications and the synthesis engine are located.
The server processes the given parameters and returns the
elements (formulas or arguments) to the user.

This paper is organized as follows. First are quoted re-
lated works on Section 2. Some essential concepts for un-
derstanding this paper approach are presented in Section 3.
In Section 4 the solution architecture is exhibited. The re-
sources developed to validate the approach are presented in
Section 5. Conclusions about the paper and future works
are mentioned in Section 6.

2. RELATED WORK
The work [1] presents two main components aimed at

natural deduction: the generation of these components is
intended to allow computer-aided education for this great
domain. The key technology used here is called Universal
Graph of Proofs (UPG), the technology encodes all the pos-
sible inference rules’ applications overall small abstracted
propositions using its bit vector-based truth table represen-
tation. This technology allows the generation of solutions
and, from backward research made in the UPG it is possible
to generate problems. The main algorithmic understand-

DOI: 10.36558/rsc.v13i2.8160

Revista de Sistemas e Computação, Salvador, v. 13, n. 2, p. 17-26, maio/ago. 2023
https://revistas.unifacs.br/index.php/rsc

17

https://dx.doi.org/10.36558/rsc.v13i2.8160

ing for problem generation is performing the modeling as
a reversed generation of the solution, and the needed back
search is abled because of UPG. Therefore, the authors con-
sider two ends in this segment, producing similar problems
and parameterized problems.

In [16] the authors describe a method for automatic feed-
back generation to initial programming problems, using an
extension of the Program Sketching approach. The solving
of ruler and compass geometry problems is described in [6].
The tool proposed by the authors can successfully synthe-
size constructions for a variety of geometry problems. For
algebra studies, the solution presented in [15] generates new
algebra problems similar to one that is given by the user.
Another proposal algebra is described by [2], in which the
authors synthesize math problems for middle schoolers and
high schoolers.

The Program Sketching approach has many applications
in the field and specifically in Program Synthesis. We can
mention [23], in which the authors propose an approach to
automatically synthesize a new version of a database pro-
gram based on its original version and the source and desti-
nation schemas. [24] automatically synthesizes SQL (Struc-
tured Query Language) searches from Natural Language, us-
ing standard analysis technicians in the program outline.
The authors from [12] show how to synthesize probabilistic
programs based on real-world datasets. Those authors use
Program Sketching to specify the program skeletons contain-
ing holes and the Markov Chain Monte Carlo (MCMC) to
efficiently instantiate the holes.

The works above mentioned concern the generation of any
instance belonging to an application domain, whether it is
aimed at education or a problem that is being solved with
the Program Sketching approach. The approach presented
in this paper is similar to the one described in [1], mainly
regarding the problem generation in a parameterizable way
for the Natural Deduction study. However, the authors of
the work use a technique based on UPG. Here, we adapt the
Program Sketching approach to assemble specifications in-
serted in the Alloy modeling language. From these specifica-
tions, it is possible to generate several instances of formulas
and arguments of Propositional Calculus in a parameteri-
zable way. The other mentioned works are similar to the
presented approach when it comes to the purpose, that is,
in the automatic generation of problems. In a more spe-
cific context, this paper addresses a different problem from
the ones mentioned in those works, which is Propositional
Calculus.

3. BACKGROUD

3.1 Program Synthesis
Program Synthesis is the task of automatically finding a

program that satisfies a certain specification in a specific pro-
gramming language [7]. Since the beginning of Artificial In-
telligence (AI) in 1950, this problem became the Holy Grail
of Computer Science. This is due to the main idea of the
theme being distant from the reality of a common computer
program that is applied on the daily basis. Whereas, unlike
typical compilers that translate a code completely specified
in high level to its low-level machine representation, Pro-
gram Synthesis performs some form of research through the
program scope for generating a program that is consistent
with a variety of restrictions. [7].

Program Synthesis is notoriously a challenging problem.
Its two main challenges are:

• Program Scope - the number of programs in any trivial
programming language grows exponentially with the
program size. This large amount of possible candi-
dates to a program, for a long time, has rendered an
intractable task.

• User Intent - Many real-life applications domain for
Program Synthesis are too complex to be completely
described as a formal or informal specification. The
methods for expressing the user intention range from
logical specifications for informal descriptions in natu-
ral language to input and output examples.

In the Program Synthesis literature, there are some tech-
niques for synthesizing programs. The main approaches are:

• Program Sketching - the programmer gives a basic
structure of the program, a sketch which has gaps in
its structure that need to be filled with the synthesis
process [7].

• Enumerative Research - an obvious brute force ap-
proach with an elegant trick, and despite its apparent
naivete, has been used with great effect [3].

• Stochastic Research - this approach learns a distribu-
tion about the program scope in the scope of hypothe-
ses that are conditioned by the specification and then
tests programs from the distribution to learn a consis-
tent program [7].

• Programming by Examples - this is a subfield of Pro-
gram Synthesis where the specification of a certain pro-
gram is given in the form of input and output examples
[5].

As mentioned before, we developed an approach based on
Program Sketching. This technique allows the programmer
to express the high-level details of a problem by writing a
sketch. A sketch is a partial program that encodes a solution
structure and leaves its low-level details unspecified [17]. In
Program Sketching the programmer also needs to provide a
reference implementation or a set of test routines that the
synthesizer code must pass.

When entering a partial program for a specific synthesizer,
the user must remember to do it so leaving the holes that
must be filled with the synthesis. The partial program holes
complete the synthesized program that must be tested with
the set of routines provided by the user [18]. In this kind of
synthesis, the main purpose is to fill that holes, which are
parts that need to be synthesized in a partial program.

This paper approach formally defines the structure of Propo-
sitional Calculus elements, which characterizes the sketches
of the elements. From these sketches, an analyzer auto-
matically finds instances of the elements with customized
characteristics along with the constraint insertion for each
type. Therefore, the Program Sketching technique is applied
in the synthesis of these objects.

There are some tools available to work with Program Syn-
thesis. The main ones are listed below:

• SKETCH: a tool in which the programmer needs to
give a partial program, along with the purpose spec-
ification of the program. The partial program must

Revista de Sistemas e Computação, Salvador, v. 13, n. 2, p. 17-26, maio/ago. 2023
https://revistas.unifacs.br/index.php/rsc

18

contain the holes that will be filled with the synthesis
and the sketches are written in their language (Sketch),
similar to C language [4]. SKETCH [20] has a fair
amount of limitations, some of them are: it only syn-
thesizes constants, it is necessary to specify the pro-
gram behavior, it must provide a partial program, and
finally, the tool synthesizes imperative programs be-
longing only to a single language, which is Sketch.

• Rosette: a programming language that extends the
Racket language. Racket is a multi-paradigm language
belonging to the language family LISP with the ends of
serving as a platform for the design, creation, and im-
plementation of other programming languages [4]. It
allows verifying and synthesizing programs, the latter
working with partial programs (sketches) definition.
The holes in the given sketches can be fulfilled by ex-
act or symbolic values, such as numbers or expressions.
With Rosette [19], it is possible to generate programs
that belong to any programming language as long as it
is defined using the Racket creation functionalities and
to generate expressions of that language using Rosette.

• PROSE: Microsoft Program Synthesis using Examples
SDK also known as Microsoft PROSE SDK, is a frame-
work for synthesizing programs using input and output
examples. Given a DSL - Domain-Specific Language
and a set of examples, PROSE manages to synthe-
size a program consistent with the given examples [4].
With PROSE SDK [10], a user who does not know
much about the field can provide examples. Then, the
tool can be used to generate programs without the
user knowing how the programming language works.
However, building the DSL necessary for the synthesis
process requires semantics knowledge of the language
to be synthesized.

• Alloy: based on first-order logic, Alloy language is
capable of describing structures and relationships [8].
The Alloy language has been used in a great range of
applications, from finding loopholes in security mecha-
nisms to designing telephone communication networks.
Given its ease of specifying models and automatically
generating instances for those models, the Alloy is also
a greatly used tool in Program Synthesis. There is
also tooling support named Alloy Analyzer, which is a
solver that analyzes structures, relationships, proper-
ties, and constraints in search of models that satisfy
them.

When working with Program Synthesis, it is important to
highlight that synthesizers are developed to generate differ-
ent types of programs. These ‘types’ of programs are defined
through grammars, which generate objects through synthe-
sizers, such as a simple algorithm, a number, a mathematical
equation, or even a formula from Propositional Calculus. In
the context of Computer Theory, a grammar is a model used
to generate a language.

3.2 Propositional Language
When defining a Formal Language it is needed to define

its two basic components: an alphabet and the production
rules. Propositional Calculus alphabet is defined by:

• a set of propositional symbols, which are also called
atoms, or propositional variables: Q = {p0, p1, ...};

• the unary connective ¬ (negation, reads ‘no’).

• the binary connectives ∧ (conjunction, reads ‘and’), ∨
(disjunction, reads ‘or’), → (implication, reads ‘if..then..’),
and ↔ (biconditional, reads ‘..if and only if..’); and

• punctuation elements, which are exclusively parenthe-
ses: ‘(’ and ‘)’.

The LLP elements of Propositional Calculus are called for-
mulas, more specifically well-formed formulas - wff’s. The
following is a formal definition of wff according to [14].
The set of Propositional Calculus formulas is defined by

induction and has three cases: a basic case and two induc-
tive cases. Therefore, the LLP set of propositional formulas
is inductively defined as the smallest set satisfying the fol-
lowing formation rules.

1. Basic case: all propositional symbols are in LLP , that
is, Q ⊆ LLP . Propositional symbols are called atomic
formulas or atoms. Thus, propositional symbols are
also wff’s.

2. Inductive case 1: If α ∈ LLP , then ¬ α ∈ LLP .

3. Inductive case 2: If α, β ∈ LLP , then (α ∧ β) ∈ LLP ,
(α ∨ β) ∈ LLP , (α → β) ∈ LLP , (α ↔ β) ∈ LLP .

In addition to wff’s there are also Propositional Calculus
arguments. These elements are formed by a set of premises,
and a conclusion, which are wff’s. Then, the argument gen-
eration happens partially based on the wff’s specifications.

The definitions presented in this Section are used in the
automatic generation of formulas and arguments of Proposi-
tional Calculus. Furthermore, a context-free grammar that
describes the words of the Propositional Language was used
in the developed synthesizer.

3.3 Alloy
Alloy is a declarative model specification language in which

it is possible to use logical formalisms to generate sufficient
constraints for structuring a given problem [8]. This tool
is widely used in the creation of software systems models
which are greatly used by Software Engineering. For this,
Alloy uses set theory and first-order logic to produce enough
(and even complex) constraints to correctly specify the be-
havior of a certain system.

Below are listed some concepts used by Alloy:

• Set Theory: an area of mathematics studies that in-
troduces the concept of sets. Sets are collections that
store single elements in an unordered way. In Alloy,
sets are represented by model entities and elements
are instances of those entities. A relationship between
two entities also represents a set in which elements
can be expressed by tuples of element pairs of the en-
tities involved in the relationship. Sets have operations
that serve the purpose of manipulating their elements
to generate other sets or obtain logical results. Such
operations can be classified as a union, intersection,
difference, belonging, equality, etc.

• Object-Orientation (OO): paradigm widely used in the
computer science field that serves to represent entities
as objects. In Alloy, each object contains relationships.
That is a concept based on the set theory itself. In OO,

Revista de Sistemas e Computação, Salvador, v. 13, n. 2, p. 17-26, maio/ago. 2023
https://revistas.unifacs.br/index.php/rsc

19

new features are presented, such as creating abstract
entities, supporting inheritance between entities (ob-
jects), etc.

• First-Order Logic: a field of mathematics in which logi-
cal formalisms are studied, which are formed by logical
operations. In Alloy, first-order logic is widely used to
express constraints on relationships between entities.
In addition to set theory operations, it is also possible
to express the cardinality/number of entities (sets) in
each relationship. This cardinality is represented by
quantifiers. Two quantifiers widely used in first-order
logic are the so-called universal and existential quan-
tifiers.

The Alloy language has some elements that need to be
defined to understand the approach presented in this paper.
Some of these commands are defined below:

• Signature: signatures are represented by the prefix sig,
those represent the entities that are being modeled,
followed by the entity name. Such entities can be re-
lated to each other by the use of logical quantifiers
used in first-order logic, to limit the number of entities
involved in the relationship.

• Facts: represented by the reserved word fact, these
are explicit restrictions applied to entity relationships,
those are made with first-order logic.

• Predicates: represented by the prefix pred, these are
expressions that can return true or false values, which
are used together with the run command can generate
model instances.

Code 1 presents an example specification written in Alloy
language. Lines 1 to 4 define some entities that represent a
Student who has a contact list. In line 5 a fact is defined
that says that every phone has an associated number. Line
6 is defining a show predicate that says that the Student has
4 phones in their list. In line 7, the Alloy Analyser is told to
execute the show predicate and find a student model with 4
phones. The ’4’ in line 7 indicates that the model contains
up to 4 different objects.

1 sig Number {}
2 abstract sig Phone{number : one Number}
3 abstract sig Person {phones : set Phone}
4 one sig Student extends Person {}
5 fact {all n: Number| one t: Phone| t.number = n}
6 pred show(){# Person.numbers = 4}
7 run show for 4

Code 1: Example using Alloy language.

4. SOLUTION ARCHITECTURE
In this section, the architecture of the developed solution

is presented. The solution process is broken down into some
steps that when added together, generate the Propositional
Calculus elements. Figure 1 shows the walkthrough of the
architecture.
In Figure 1, in step (1) the user accesses the mobile appli-

cation interface. In step (2), the user chooses if he/she wants
to generate formulas (2a) or arguments (2b) and gives the
necessary parameters for generating the chosen object. In
(3), the app puts together the information provided by the
user and sends it to the Web Service (4) through a request.

In (5), the Web Service receives the information, verifies
if the user asked for generating formulas or arguments (6),
and assembles an Alloy code with all the information. The
Web Service puts together the Alloy code with a basic Alloy
specification for each element of Propositional Calculus, thus
generating a complete file with Alloy specifications (7). The
file is executed through the Alloy API (8). The Alloy API
accesses an Alloy interpreter.

By default, the Alloy API returns an Alloy code, so it is
necessary to transform this code into values belonging to the
formal definition of the Propositional Calculus. This trans-
formation takes place after the models are generated and
returned by the Alloy API (9). The values to be achieved in
the transformation, which are formally defined, range from
the structure of objects to the insertion of real logical op-
erators. This transformation is partial, so it is necessary to
fill the spaces of the atoms with the letters of the alphabet
(10). This filling of atoms is according to the order and
quantity instanced in parameterization (2). After generat-
ing the objects, the Web Service returns them to the mobile
application in (11). In the user app, a PDF file is generated
and put available to the user. There is also a preview (12a)
of the lists of generated elements and it is possible to view,
share or save the PDF file (12b).

The architecture presented in this section has some essen-
tial components for the solution to work. These components
are detailed in Section 5.

5. SOLUTION COMPONENTS
The presented approach has three main components to be

detailed: the Alloy specifications, the API, and the mobile
software tool.

5.1 Alloy Specifications
In this section, Alloy specifications for well-formed formu-

las and valid arguments are presented. The logic validity of
the generated arguments is guaranteed by construction.

Combining the technique of programming by constraints
technique using the Alloy language with the Program Skec-
thing technique, it is possible to generate formulas and valid
arguments of the Propositional Calculus.

Two software tools were developed, a mobile application
and an API (Application Programming Interface) that is
available in web service format. To summarize, the devel-
oped synthesis process consists of three steps: (i) user inten-
tion about the characteristics of the formula (or argument)
provided through the mobile application; (ii) parameteriza-
tion based on Alloy specifications on the service web; and
(iii) generation of models using the Alloy Analyzer API.

The specification referring to wff can be seen in Code 2.
In line 1, the abstract entity Formula is defined. Such an
entity can be Unary ou Binary (lines 2 and 3). Lines 4 to 6
define the entities that can be instantiated: atom, negation,
conjunction, disjunction, implication or bi-implication.

1 abstract sig Formula {}
2 abstract sig Unary extends Formula{
3 child : Formula
4 }
5 abstract sig Binary extends Formula{
6 left , right : Formula
7 }
8 sig Atom extends Formula {}
9 sig Not extends Unary{}

10 sig And , Or, Imply , BiImply extends Binary {}

Revista de Sistemas e Computação, Salvador, v. 13, n. 2, p. 17-26, maio/ago. 2023
https://revistas.unifacs.br/index.php/rsc

20

Figure 1: Solution architecture.

11 one sig FBF{ mainOperator : one Formula }

Code 2: Basic entities for wff’s.

The Alloy Analyzer searches for models that meet the
specifications. Line 7 tells the analyzer that, in the search
process, it must find models that have only one instance
of a wff , which is related to only one object defined as a
Formula. The single instance wff is the formula root, its
main operator. However, just with this specification, the
analyzer can find models in which there will present wrong
and unwanted features. For instance, disjointed formulas
or binary formulas where some part is the formula itself, a
self-reference producing an infinite loop, etc.

In Code 3, line 1 presents a fact that prevents formulas
from having cycles in the tree generated by the Alloy An-
alyzer. This prevents the infinite loop. The fact in line 2,
on the other hand, defines that every Formula object must
be in the same tree generated from the only WFF object.
Thus, avoiding unlinked Formula objects.

1 fact NoCycle{no n,n’: Formula | n in n’.^(child+
↪→ left+right) and n’ in n.^(child+left+
↪→ right)}

2 fact EveryNodeAtAFBF{all n: Formula | one t: FBF |
↪→ n in t.mainOperator .*(child+left+right)}

3 pred Config (){ #And>0 #Or>0 #Not>0 #Imply=0 Â #
↪→ BiImply=0 (#Atom≥3 ∧ #Atom≤6) }

Code 3: Facts about wff’s and parameterizable predicate.

Line 3 shows a configuration for formula synthesis. While
the specification already presented always remains the same,
this part is generated from the customization made by the
user through the mobile application developed. In this pre-
sented case, user defines that formulas with at least one
conjunction, at least one disjunction, at least one negation,
no implication, and no bi-implication must be generated. It
is also defined that all wff’s must have between three and
six distinct atoms.

In Code 4 the specification regarding the structures of the
inference rules is presented. Line 1 is the abstract entity
Rule. Each signature corresponds to a rule, namely: NE
and NI - negation exclusion and inclusion; CE and CI -
conjunction exclusion and inclusion; DE and DI - disjunction
exclusion and inclusion; BE and BI - bi-implication exclusion
and inclusion; MP - modus ponens; MT - modus tollens; and
SD - disjunctive syllogism.

1 abstract sig Rule { }
2 sig NE extends Rule {p1 : Not , r: Formula}
3 sig NI extends Rule {p1 : Formula , r: Not}
4 sig CI extends Rule {p1 : Formula , p2 : Formula , r:

↪→ And}
5 sig CE extends Rule {p1 : And , r: Formula}
6 sig DI extends Rule {p1 : Formula , r: Or}
7 sig DE extends Rule {p1 : Imply , p2 : Imply , p3 : Or, r

↪→ : Formula}
8 sig BI extends Rule {p1 : Imply , p2 : Imply , r:

↪→ BiImply}
9 sig BE extends Rule {p1 : BiImply , r: Imply}

10 sig MP extends Rule {p1 : Formula , p2 : Imply , r:
↪→ Formula}

11 sig MT extends Rule {p1 : Formula , p2 : Imply , r:
↪→ Formula}

12 sig SD extends Rule {p1 : Formula , p2 : Or, r: Formula
↪→ }

Code 4: Inference rules structures.

To exemplify one of the rules, we have in line 4 the con-
junction inclusion. This rule structure is composed of three
parts: any two wff’s, and a resulting wff which must be
conjunction. However, it is not yet specified that the latter
must be a conjunction between the former ones.

Code 5 presents the facts that define how each inference
rule must work. In line 4, for the conjunction inclusion, it is
defined that for any CI instance, its result (an And instance)
must have the left and right parts equal to the first parts of
CI, regardless of order.

Revista de Sistemas e Computação, Salvador, v. 13, n. 2, p. 17-26, maio/ago. 2023
https://revistas.unifacs.br/index.php/rsc

21

1 fact rules{
2 all ne : NE | ne.p1.child.child=ne.r
3 all ni : NI | ni.p1=ni.r.child.child
4 all ci : CI | (ci.r.left=ci.p1 and ci.r.right=ci.p2

↪→) or (ci.r.left=ci.p2 and ci.r.right=ci.
↪→ p1)

5 all ce : CE | ce.r = ce.p1.left or ce.r = ce.p1.
↪→ right

6 all di : DI | di.p1 in di.r.(right+left)
7 all de : DE | ((de.p1.left=de.p3.left and de.p2.

↪→ left=de.p3.right) or (de.p1.left=de.p3.
↪→ right and de.p2.left=de.p3.left))

8 and de.p1.right=de.p2.right and de.r=de.p2.right
9 all bi : BI | bi.p1.right=bi.p2.left and bi.p2.

↪→ right=bi.p1.left
10 and ((bi.r.right=bi.p2.right and bi.r.left=bi.p2

↪→ .left) or (bi.r.right=bi.p2.left and bi.
↪→ r.left=bi.p2.right))

11 all be : BE | (be.r.left=be.p1.left and be.r.right=
↪→ be.p1.right) or (be.r.left=be.p1.right
↪→ and be.r.right=be.p1.left)

12 all mp : MP | mp.p1 = mp.p2.left and mp.r = mp.p2.
↪→ right

13 all mt : MT | (mt.p1.child = mt.p2.right and mt.r.
↪→ child = mt.p2.left) or (mt.p1 = mt.p2.
↪→ right.child and mt.r = mt.p2.left.child)

14 all sd : SD | (sd.p1.child = sd.p2.left and sd.r =
↪→ sd.p2.right) or (sd.p1.child = sd.p2.
↪→ right and sd.r = sd.p2.left)

15 }

Code 5: Inference rules behavior.

In Code 6, facts considered important to argument gener-
ation are presented. In lines 1 to 3, predicates used in these
facts are defined, namely: line 1 - one formula is not the
same as another; line 2 - right side is different from the left
side of the formula; and line 3 - the right side of the formula
is not the negation of the left side, and vice versa.

1 pred isNotEqualTo[a: Formula ,a’: Formula]{ (a.right
↪→ ̸=a’.right or a.left̸=a’.left) and (a.right
↪→ ̸=a’.left or a.left̸=a’.right)}

2 pred avoidA_A[a: Formula]{ a.right̸=a.left }
3 pred avoidA_noA[a: Formula]{ (a.right.child̸=a.left

↪→) and (a.right̸=a.left.child) }
4 fact {
5 all a,a’: Not | a.child=a’.child implies a=a’
6 all a,a’: And | a.isNotEqualTo[a’]
7 all a,a’: Or | a.isNotEqualTo[a’]
8 all a,a’: BiImply | a.isNotEqualTo[a’]
9 all a,a’: Imply | (a.right=a’.right and a.left=a’.

↪→ left) implies a=a’
10 all x: And | x.avoidA_A
11 all x: Or | x.avoidA_A
12 all x: Imply | x.avoidA_A
13 all x: BiImply | x.avoidA_A
14 all x: And | x.avoidA_noA
15 all x: Or | x.avoidA_noA
16 all x: Imply | x.avoidA_noA
17 all x: BiImply | x.avoidA_noA
18 }

Code 6: Important facts to the argument generation.

The facts presented in Code 6 prevent two or more in-
stances of an implication from generating the same formula
more than once, for example. This makes formula gener-
ation more efficient and more effective. For instance, the
implication may occur more than once among premises and
conclusion. If this is the case, it will be generated only one
instance in the model, found by the Alloy Analyzer, but with
more than one relationship.
The specifications presented in Code 7 can be divided into

five parts. Between lines 1 and 13, the facts that prevent
the same application of a rule from occurring more than

once are presented. For instance, the negation exclusion can
occur more than once, but not generate the same result, for
example. In lines 14 to 16, variables are defined for the sake
of simplifying the specification of the following fact.

1 fact {
2 all a,a’: NE | (a.r=a’.r) implies a=a’
3 all a,a’: NI | (a.r=a’.r) implies a=a’
4 all a,a’: CE | (a.p1=a’.p1 and a.r=a’.r) implies a

↪→ =a’
5 all a,a’: CI | (a.r=a’.r) implies a=a’
6 all a,a’: DI | (a.p1=a’.p1 and a.r=a’.r) implies a

↪→ =a’
7 all a,a’: DE | ((a.p1.isNotEqualTo[a’.p1] and a.p2

↪→ .isNotEqualTo[a’.p2]) or (a.p1.
↪→ isNotEqualTo[a’.p2] and a.p2.isNotEqualTo
↪→ [a’.p1]))

8 and a.p3.isNotEqualTo[a’.p3] implies a=a’
9 all a,a’: BE | (a.p1=a’.p1 and a.r=a’.r) implies a

↪→ =a’
10 all a,a’: SD | (a.p1=a’.p1 and a.p2=a’.p2) implies

↪→ a=a’
11 all a,a’: MP | (a.p1=a’.p1 and a.p2=a’.p2) implies

↪→ a=a’
12 all a,a’: MT | (a.p1=a’.p1 and a.p2=a’.p2) implies

↪→ a=a’
13 }
14 let P1 = NE<: p1+NI<: p1+CI<: p1+CE<: p1+DI<: p1+DE<:

↪→ p1+BI<: p1+BE<: p1+MP<: p1+MT<: p1+SD<: p1
15 let P2 = CI<: p2+DE<: p2+BI<: p2+MP<: p2+MT<: p2+SD<:

↪→ p2
16 let R = NE<: r+NI<: r+CI<: r+CE<: r+DI<: r+DE<: r+BI<: r

↪→ +BE<: r+MP<: r+MT<: r+SD<: r
17 fact OneOrigin{
18 one rule : Rule | all f: Formula | f in rule.(P1+

↪→ P2+p3+R).*(child +Binary<: left + Binary<:
↪→ right) or f=rule.P1 or f=rule.P2 or f=
↪→ rule.p3 or f=rule.R

19 }
20 one sig Argument{ premisse : set Formula ,

↪→ conclusion : one Formula }{
21 #premisse=3 and not (conclusion in premisse)
22 }
23 run Config for 4

Code 7: Argument generation restrictions and signature.

From line 17 to line 19, it is specified the fact that there
is a single rule which is applied to the formulas (premises)
and/or from which the other formulas (non-basic premises)
can be reached, even with the application of other rules
in intermediate steps. This fact provides two guarantees.
Firstly, there will be a single origin in the proof process.
And secondly, the conclusion can be inferred from the set of
premises, that is, that the argument is valid.

Line 20 defines that there must be only one argument with
premises and a conclusion. On the other hand, in line 21 is
defined that there are three premises and none of them must
be the conclusion. Finally, on line 23 an empty configuration
(Config predicate) is defined without further restrictions,
telling the analyzer to generate up to four instances of each
entity.

5.2 API
An API (Application Programming Interface) was devel-

oped to establish a connection between the mobile app and
the basic specifications written in Alloy language. Com-
munication between the app and this API occurs through
HTTP requests, with the exchange of files in JavaScript Ob-
ject Notation (JSON) format. Figure 2 shows the layered
architecture of the approach presented in this paper.

In Figure 2, in (1) there is the mobile application whose
details are presented in Section 5.3, which accesses the API

Revista de Sistemas e Computação, Salvador, v. 13, n. 2, p. 17-26, maio/ago. 2023
https://revistas.unifacs.br/index.php/rsc

22

Figure 2: Layered architecture.

developed in (2). The API assembles the Alloy specifications
(3) according to the base specifications presented in Section
5.1, and finally, it makes a call to the Alloy (4) API to access
the language interpreter. The specifications are processed
and the mobile app gets a return based on this process, and
the parameters provided in the initial request.

The API was developed in programming language Java,
using Spring Framework [22], and Spring Boot [21] technolo-
gies, mainly used in the development of corporate software.
The decision of using the Java language in the API devel-
opment was made because there is support for the Alloy
language (Alloy API). This allows the passage of specifica-
tions and the extraction of generated models. Figures 3 and
4 show real examples returned from the API.

Figure 3 presents a set of returned formulas and seven
parts are highlighted. In (1), the API is informed of a
number range for Alloy to choose which number of differ-
ent atoms the formulas will contain, in this case from 3 to
6 atoms. In (2), it indicates that the number of atoms does
not have a last value fixed. In (3), the API is informed that
one formula will be generated for each list, with the number
of lists fixed at five, informed in (6). In (4) it is given that
the generated formulas will contain at least the operators
given in (5).

Figure 4 presents a set of returned arguments. In (1),
it is specified which inference rules are used to validate the
argument and which can be used to prove it. In (2), the API
is informed of the number of different atoms the formulas
present in the arguments will contain, it would be up to 4
different atoms. In (3), as an example, the API is informed
that an argument is returned in each list, with a number
of lists fixed at five, informed in (4). The parameters given
in both Figure 3 and Figure 4 examples are received by the
API, which assembles an Alloy code with these parameters.
This Alloy code is merged with the base specification of each
element of the Propositional Calculus that the API contains,
thus generating a complete Alloy code. The complete Alloy
Code is passed for the Alloy API to process and return the
models.

5.3 Mobile application
The main purpose of the mobile app is to receive the user

parameters referring to the automatic generation of formulas
or arguments and to be able to show what the API returns.
The application was developed in Flutter [9]. The choice
of Flutter for app development was because it is an open-
source SDK created by Google, which has been growing in
the context of cross-platform apps for Android and IOS since
its launch in May 2017.

Flutter uses the programming language Dart and provides
several benefits for the developer, such as: creating appli-

cations with attractive interfaces, productivity, and speed.
Moreover, it is open-source, making it possible for develop-
ers to create their code packages and offer them to the entire
technology community, thus increasing the component alter-
natives in creating applications.

Figures 5 and 6 show screen sequences for generating for-
mulas and arguments, respectively. Due to space restric-
tions, the screens are presented in a reduced form, but in
the [Github] repository there is a complete tutorial for using
the mobile application functionalities.

In Figure 5, in (1) the user performs the parameterization
to be able to generate formulas. There are four sections
on this screen: amount of atoms (quantidade de Ã¡tomos
in portuguese) - user enters a settled range or number of
different atoms for each formula; amount of wff’s (quantidade
de fbf ’s in portuguese) - user informs how many wff’s he

wants in each exercise list; operator selection (seleÃ§Ã£o de
operadores in portuguese) - user selects the operators that
the generated formulas will contain and whether they want
only those operators or at least these ones; and different
exercise lists (lista de exercÃcios diferentes in portuguese) -
user enters how many exercises lists he/she wants.

After collecting the parameters, the app sends an HTTP
request to the API, which generates the formulas instances
based on the given parameters, and returns them to the
application in (2) (Figure 5). After the formulas are received
by the app, the user has a preview of the formulas and can
download a PDF with the lists on the cellphone, take a look
at it or share it with third-party apps.

In Figure 6 the functioning is similar to that shown in
Figure 5. In (1) are also presented four sections on the
screen: select inference rules - user selects inference rules
used to validate arguments; amount of different atoms - user
informs how many different atoms the formulas present in
the generated arguments will contain; amount of arguments
- user informs the number of arguments in each list; and
lists of different exercises - user informs the number of lists
he/she wants.

The request made by the mobile app in the generation of
arguments is similar to the generation of formulas (shown in
Figure 5). So are the functionalities that can be done from
the return to the app in (2).

6. FINAL REMARKS AND FUTURE WORK
This paper presented an approach for automatic gener-

ating Propositional Calculus formulas and arguments. For
this, a first-order-based language called Alloy modeling lan-
guage is used with its analyzer. The approach is quite
promising, as it seeks to meet a real demand for Logic stu-
dents and professors.

As means to make it happen, a tool was developed imple-
menting communication and process algorithms in the form
of an API, and embedding the Alloy API. With such a tool,
students have access to an arsenal of problems to practice
the curricular contents. Therefore, the professors will not
need to invest time in the elaboration of exercises for the
students. It is enough for the teacher to simply specify and
share characteristics of the questions or formulas to be gen-
erated.

Regarding the related works, there is a considerable sim-
ilarity with Ahmed et al. [1]. The authors use the UPG
and the bit vector to be able to generate problems and solu-
tions for natural deduction. We focus only on the problem

Revista de Sistemas e Computação, Salvador, v. 13, n. 2, p. 17-26, maio/ago. 2023
https://revistas.unifacs.br/index.php/rsc

23

Figure 3: Example of API response for formula generation.

generation part by adapting a Program Synthesis technique,
Program Sketching, and using programming by constraints.
Thus, it is possible to specify the basic structure of the Logic
elements through sketches and define the formation rules of
elements through constraints. Formulas are structurally val-
idated according to the formal definition of wff. Arguments
are validated according to the use of inference rules within
generation time.

This work successfully achieved the generation of valid
arguments from Propositional Calculus. Such a result was
obtained through the use of the Alloy modeling language
and its Analyser. In addition, a mobile app was developed so
students and teachers can generate formulas and arguments
with a user-friendly interface. Another important result is
the developed API that establishes communication between
the application and Alloy specifications.

For future works, to enrich the basic Alloy specifications
is intended so it would be possible to deal with hypothetical
rules in arguments, such as conditional proof and reductio
ad absurdum. Another improvement will be the generation
of hints to students to solve argument proofs. The API will
be improved so that it will be possible for other applications
to be created based on it, implementing features such as
security and authentication. Finally, improving the mobile
application is also intended to generate better elaborated
and more complex valid arguments.

7. REFERENCES
[1] U. Z. Ahmed, S. Gulwani, and A. Karkare.

Automatically generating problems and solutions for
natural deduction. In IJCAI, pages 1968–1975.
Citeseer, 2013.

[2] E. Andersen, S. Gulwani, and Z. Popovic. A
trace-based framework for analyzing and synthesizing
educational progressions. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems, pages 773–782, 2013.

[3] J. Bornholt. Program synthesis explained.
https://www.cs.utexas.edu/~bornholt/post/

synthesis-explained.html. Accessed in 03/31/2023.,
2015.

[4] J. P. M. Cordeiro. Śıntese de programas utilizando a
linguagem alloy, 2017.

[5] S. Gulwani. Programming by examples (and its
applications in data wrangling). In Verification and
Synthesis of Correct and Secure Systems. IOS Press,
January 2016.

[6] S. Gulwani, V. A. Korthikanti, and A. Tiwari.
Synthesizing geometry constructions. ACM SIGPLAN
Notices, 46(6):50–61, 2011.

[7] S. Gulwani, A. Polozov, and R. Singh. Program
Synthesis, volume 4. NOW, August 2017.

[8] D. Jackson. Software Abstractions: logic, language,
and analysis. MIT press, 2012.

[9] G. D. C. C. A. . I. License). Flutter.
https://flutter.dev. Accessed in 03/31/2023., 2017.

[10] Microsoft. Microsoft program synthesis using examples
(prose). https://www.microsoft.com/en-us/
research/project/prose-framework/. Accessed in
03/31/2023., 2021.

[11] M. Mozgovoy, T. Kakkonen, and G. Cosma.
Automatic student plagiarism detection: future
perspectives. Journal of Educational Computing
Research, 43(4):511–531, 2010.

[12] A. V. Nori, S. Ozair, S. K. Rajamani, and
D. Vijaykeerthy. Efficient synthesis of probabilistic
programs. ACM SIGPLAN Notices, 50(6):208–217,
2015.

[13] A. Pnueli and R. Rosner. On the synthesis of a
reactive module. In Proceedings of the 16th ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 179–190, 1989.

[14] F. S. C. d. Silva, M. Finger, and A. C. V. d. Melo.

Lógica para computaÃ§Ã£o. Cengage Learning, 2006.

[15] R. Singh, S. Gulwani, and S. Rajamani. Automatically
generating algebra problems. In Twenty-Sixth AAAI
Conference on Artificial Intelligence, 2012.

Revista de Sistemas e Computação, Salvador, v. 13, n. 2, p. 17-26, maio/ago. 2023
https://revistas.unifacs.br/index.php/rsc

24

https://www.cs.utexas.edu/~bornholt/post/synthesis-explained.html
https://www.cs.utexas.edu/~bornholt/post/synthesis-explained.html
https://flutter.dev
https://www.microsoft.com/en-us/research/project/prose-framework/
https://www.microsoft.com/en-us/research/project/prose-framework/

Figure 4: Example of API response for argument generation.

[16] R. Singh, S. Gulwani, and A. Solar-Lezama.
Automated feedback generation for introductory
programming assignments. In Proceedings of the 34th
ACM SIGPLAN conference on Programming language
design and implementation, pages 15–26, 2013.

[17] A. Solar-Lezama. The sketching approach to program
synthesis. In Z. Hu, editor, Programming Languages
and Systems, pages 4–13, Berlin, Heidelberg, 2009.
Springer Berlin Heidelberg.

[18] A. Solar-Lezama and R. Bodik. Program synthesis by
sketching. Citeseer, 2008.

[19] E. Torlak. The rosette guide. https://docs.
racket-lang.org/rosette-guide/index.html.
Accessed in 03/31/2023., 2020.

[20] N. Tung. Sketch-wrapper. https://bitbucket.org/
gatoatigrado/sketch-wrapper/src/master/.
Accessed in 03/31/2023., 2012.

[21] I. VMware. Spring boot.
https://spring.io/projects/spring-boot. Accessed
in 03/31/2023., 2023.

[22] I. VMware. Spring framework.
https://spring.io/projects/spring-framework.
Accessed in 03/31/2023., 2023.

[23] Y. Wang, J. Dong, R. Shah, and I. Dillig. Synthesizing
database programs for schema refactoring. In
Proceedings of the 40th ACM SIGPLAN Conference
on Programming Language Design and
Implementation, pages 286–300, 2019.

[24] N. Yaghmazadeh, Y. Wang, I. Dillig, and T. Dillig.
Sqlizer: query synthesis from natural language.
Proceedings of the ACM on Programming Languages,
1(OOPSLA):1–26, 2017.

Revista de Sistemas e Computação, Salvador, v. 13, n. 2, p. 17-26, maio/ago. 2023
https://revistas.unifacs.br/index.php/rsc

25

https://docs.racket-lang.org/rosette-guide/index.html
https://docs.racket-lang.org/rosette-guide/index.html
https://bitbucket.org/gatoatigrado/sketch-wrapper/src/master/
https://bitbucket.org/gatoatigrado/sketch-wrapper/src/master/
https://spring.io/projects/spring-boot
https://spring.io/projects/spring-framework

Figure 5: Sequence for formula generation.

Figure 6: Sequence for argument generation.

Revista de Sistemas e Computação, Salvador, v. 13, n. 2, p. 17-26, maio/ago. 2023
https://revistas.unifacs.br/index.php/rsc

26

	Introduction
	Related Work
	Backgroud
	Program Synthesis
	Propositional Language
	Alloy

	Solution Architecture
	Solution Components
	Alloy Specifications
	API
	Mobile application

	Final remarks and future work
	References

